Solutions to IITJEE-2004 Mains Paper

1

Chemistry

Time: 2 hours

Question number 1 to 10 carries 2 marks each and 11 to 20 carries 4 marks each. Note:

1. For the given reaction

Following data were given		
Initial conc. (m/L).	Initial conc. (m/L)	Initial rate [mL ⁻¹ s ⁻¹
[A]	[B]	
0.1	0.1	0.05
0.2	0.1	0.1
0.1	0.2	0.05
a) Write the rate equation		

Write the rate equation.

 $A + B \longrightarrow Products$

Calculate the rate constant.

Sol. a) Let the order w.r.t A & B are x any y respectively

r = K[A]^x [B]^y

$$0.05 = K[0.1]^x [0.1]^y$$

 $0.1 = K[0.2]^x [0.1]^y$
or $2 = [2]^x$
 $x = 1$
 $0.05 = K[0.1]^x [0.1]^y$
 $0.05 = K[0.1]^x [0.2]^y$
 $1 = [2]^y$
y=0

- b) rate equation = $r = K[A][B]^0$ 0.1 = K[0.2] $K = 0.5 \text{ Sec}^{-1}$
- 100 ml of a liquid contained in an isolated container at a pressure of 1 bar. The pressure is steeply increased 2. to 100 bar. The volume of the liquid is decreased by 1 ml at this constant pressure. Find the ΔH & ΔU .
- Sol. $\Delta H = 0$, $\Delta q_p = \Delta U - W$ W = PdV $= 100 \times 1 \text{ atmmL}$ $= 10^{-2} \text{ KJ} = \Delta \text{U}$
- 3. Draw the shape of XeF₄ and OSF₄according to VSEPR theory. Show the lone pair of electrons on the central atom

Sol.

- 4. The structure of D-Glucose is as follows
 - CHO a) Draw t
 - a) Draw the structure of L Glucose.
 b) Give the reaction of L Glucose with Tollens reagent.
 - Н—— ОН НО—— Н Н—— ОН

НО

Sol.

-OH

- 5. a) Draw New mann's projection for the less stable staggered form of butane.
 - b) Relatively less stability of the staggered form is due to
 - i) Torsional strain.
 - ii) Vander Waal's strain.
 - iii) Combination of the above two.
- Sol. a)

- b) Less stability is due to Vander Waal's strain
- 6. Arrange the following oxides in the increasing order of Bronsted basicity.

- $\textbf{Sol.} \qquad \text{Cl}_2\text{O}_7 < \text{SO}_3 < \text{CO}_2 < \text{B}_2\text{O}_3 < \text{BaO}$
- 7. AlF₃ is insoluble in anhydrous HF but when little KF is added to the compound it becomes soluble. On addition of BF₃, AlF₃ is precipitated. Write the balanced chemical equations.
- Sol. $3KF + AlF_3 \longrightarrow K_3AlF_6$ $K_3AlF_6 + 3BF_3 \longrightarrow AlF_3 + 3KBF_4$
- 8. The crystal AB (rock salt structure) has molecular weight 6.023 y amu. where y is an arbitrary number in amu.. If the minimum distance between cation & anion is $y^{1/3}$ nm and the observed density is $20 \, \text{Kg/m}^3$. Find the
 - a) density in Kg/m³ and
 - b) type of defect

Sol. a) Density =
$$\frac{4 \times 6.023 \times y}{6.023 \times 10^{23} \times 8 \times y \times 10^{-27}}$$
 [Since a = 2y^{1/3}]
= 5×10^3 g/m³
= 5 Kg/m³

- Since the (density) calculated < density observed, it means the defect is metal excess defect. b)
- Which of the following is more acidic and why? 9.

is more acidic due to – inductive effect of fluorine Sol. NH₂

10. 7-bromo-1,3,5-cycloheptatriene exists as ionic species in aqueous solution while 5-bromo-1,3 cyclopentadiene doesn't ionise even in presence of Ag⁺(aq), Explain.

11. The schrodinger wave equation for hydrogen atoms is

$$\Psi_{2s} = \frac{1}{4(2\pi)^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/a}$$

- Where a_0 is Bohr's radius. Let the radial node in 2s be at r_0 . Then find r in terms of a_0 . b) A base ball having mass 100 g moves with velocity 100 m/sec. Find out the value of wave length of
- c) $_{92}X^{234} \xrightarrow{-7\alpha} Y$. Find out atomic number, mass number of Y and identify it.
- a) ψ_{2s}^2 = probability of finding electrons at any place Sol. ∴ $\Psi^2 = 0$ at node

$$\label{eq:power_problem} \begin{split} \therefore \ \Psi^2 = 0 &= \frac{1}{4} \frac{1}{\sqrt{2\pi}} \ \left(\frac{1}{a^0}\right)^3 \quad \left(2 - \frac{r}{a_0}\right)^2 \times e^{-r/a_0} \\ \left(2 - \frac{r}{a_0}\right) &= 0 \Rightarrow 2 = \frac{r}{a_0} \Rightarrow 2a_0 = r \end{split}$$

b)
$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{100 \times 10^{-3} \times 100}$$

 $\lambda = 6.626 \times 10^{-35} \text{ m} = 6.626 \times 10^{-25} \text{ A}^{\circ}$
c) Yis $_{84}\text{Po}^{206}$

- On the basis of ground state electronic configuration arrange the following molecules in increasing O-O 12. bond length order. KO_2 O_2 $O_2[AsF_6]$

Sol.
$$O_2 = \sigma ls^2, \sigma^* ls^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2p_x^2 \begin{cases} \pi 2p_y^2 \\ \pi 2p_z^2 \end{cases} \begin{cases} \pi^* 2p_y^1 \\ \pi^* 2p_z^1 \end{cases}$$

bond order =
$$\frac{10-6}{2}$$
 = 2

$$O_{2}^{-} = \sigma_{ls^{2}}, \sigma^{*}_{ls^{2}}, \sigma_{2s^{2}}, \sigma^{*}_{2s^{2}}, \sigma_{2p_{x}^{2}}^{*} \begin{Bmatrix} \pi^{2}p_{y}^{2} \\ \pi^{2}p_{z}^{2} \end{Bmatrix} \begin{Bmatrix} \pi^{*}_{2}p_{y}^{2} \\ \pi^{*}_{2}p_{z}^{2} \end{Bmatrix} in [KO_{2}]$$

bond order =
$$\frac{10-7}{2} = \frac{3}{2}$$

$$O_{2}^{+} \qquad \qquad = \sigma_{ls^{2}}\,, \sigma^{*}_{\ ls^{2}}\,, \sigma_{2s^{2}}\,, \sigma^{*}_{\ 2s^{2}}\,, \sigma_{2P_{x}^{2}} \left\{ \begin{smallmatrix} \pi^{2}P_{y}^{2} \\ \pi^{2}Pz^{2} \end{smallmatrix} \right\} \! \left\{ \pi^{*}2p_{y}^{\ l} \right\}$$

in
$$[O_2(AsF_6)]$$

bond order
$$\frac{10-5}{2} = \frac{5}{2}$$

Bond length order is $O_2^+ < O_2 < O_2^-$

13.

In the following equilibrium
$$N_2O_4(g)$$
 \longrightarrow $2NO_2(g)$

when 5 moles of each are taken, the temperature is kept at 298 K the total pressure was found to be 20 bar. Given that

$$\Delta G_f^0(N_2O_4) = 100KJ$$

$$\Delta G_f^0(NO_2) = 50KJ$$

- Find ΔG of the reaction
- The direction of the reaction in which the equilibrium shifts
- A graph is plotted for a real gas which follows Vander Waal's equation with PV_m taken on Y axis & P on \hat{X} – axis. Find the intercept of the line where V_m is molar volume
- i) $N_2O_4(g)$ \longrightarrow $2NO_2(g)$ Sol.

Reaction quotient =
$$\frac{P_{NO_2}^2}{P_{N_2O_4}} = \frac{100}{10} = 10$$
 atm

$$\Delta G^{\circ}$$
 reaction = $2\Delta G_{f}^{\circ} (NO_{2}) - \Delta G_{f}^{\circ} (N_{2}O_{4})$

$$0 = 100 - 100$$

$$\Delta G = \Delta G^{\circ} + RT \ln k$$

$$\Delta G = RT \ln Q$$

$$= 2.303 \times .082 \times 298 \times \log 9.9 = 56.0304$$
 Lit atm. = Positive

IIT-JEE 2004-M-5

ii) Therefore reaction will shift towards backward direction.

14. a) 1.22 g C_6H_5 COOH is added into two solvent and data of ΔT_b and K_b are given as:-

i) In 100 g CH₃COCH₃

 $\Delta T_{\rm b} = 0.17$

 $K_b = 1.7 \text{ Kg Kelvin /mol}$

ii) In 100 g benzene, $\Delta T_b = 0.13$ and $K_b = 2.6$ Kg Kelvin/mol Find out the molecular weight of C_6H_5COOH in both the cases and interpret the result.

b) 0.1 M of HA is titrated with 0.1 M NaOH, calculate the pH at end point. Given Ka(HA)= 5×10^{-6} and α

Sol. a) In first case

i) $\Delta T_b = K_b \times m$

$$0.17 = 1.7 \times \frac{1.22}{M \times 100 \times 10^{-3}} \Rightarrow M = 122$$

ii) In second case

$$\Delta T_b = K_b \times m$$

$$0.13 = 2.6 \times \frac{1.22}{\text{M}' \times 100 \times 10^{-3}}$$

$$M' = 244$$

Benzoic acid dimerises in benzene

b) Since at end point molarity of salt = $=\frac{0.1}{2}$ M

: pH of salt of weak acid and strong base

$$pH = \frac{\left(pK_w + pK_a + log_c\right)}{2} = \frac{1}{2} \left[14 + 5.3010 + [-1.3010] \Rightarrow pH = 9.$$

15.

Convert

in not more than four steps. Also mention the temp and reaction condition.

Sol.

16.

$$(A) \xrightarrow{C_2H_5\text{ONa}/C_2H_5\text{OH}} (B) \xrightarrow{H_3\text{O}^+} (C) \xrightarrow{\text{SOCl}_2 \atop \text{CH}_3\text{NH}_2} (D)$$

Identify A to D.

$$A =$$

$$B =$$

$$O \qquad NH$$

17. $A_1 & A_2$ are two ores of metal M. A_1 on calcination gives black precipitate, $CO_2 & water$.

Calcination

Black solid +
$$CO_2$$
 + H_2O

$$A_1 \xrightarrow{\text{dif } HCI} I_2 + \text{ppt}$$

$$A_2 \xrightarrow{\text{roasting}} \mathbf{Metal} + \mathbf{gas}$$

$$K_2Cr_2O_7 + H_2SO_4$$
green colour

Sol.
$$A_1 = Cu(OH)_2 CuCO_3$$

$$A_2 = Cu_2S$$

$$Cu(OH)_2CuCO_3 \xrightarrow{Calcination} 2CuO + CO_2 + H_2O$$
(A1) (Black Solid)

$$Cu(OH)_2CuCO_3 \xrightarrow{dilHCl} CuCl_2 + CO_2 + 3H_2O$$

$$2CuCl_2 + 4KI \rightarrow Cu_2l_2 + I_2 + 4KCl$$

$$2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$$

$$(A_2)$$

$$Cu_2S + 2Cu_2O \rightarrow 6Cu + SO_2$$

- 18. NiCl₂ in the presence of dimethyl glyoxime (DMG) gives a complex which precipitates in the presence of NH₄OH, giving a bright red colour.
 - a) Draw its structure & show H-bonding
 - b) Give oxidation state of Ni & its hybridisation.
 - c) Predict wether it is paramagnetic or diamagnetic.

Oxidation state of nickel is +2 and hybridization is dsp²

$$\mu s = \sqrt{n(n+2)} B.M$$

$$n = 0$$

$$\therefore \mu s = 0$$

19. Find the equilibrium constant for the reaction $Cu^{+2} + In^{+2} \quad \longleftarrow \quad Cu^{+} + In^{+3}$

Cu⁺² + In⁺² Cu⁺ + In⁺³
Given that

$$E_{Cu^{+2}}^{\circ} /_{Cu^{+}} = 0.15V$$

 $E_{In^{+2}}^{\circ} /_{In^{+}} = -0.4V$

$$E_{In^{+3}}^{\circ} /_{In^{+}} = -0.42 \text{ V}$$

$$Cu^{+2} + In^{+2} \qquad Cu^{+} + In^{+3} \quad \Delta G^{0} = -0.59 \text{ F}$$

$$-nFE^{\circ} = -0.59F$$

$$-E_{cell}^{0}F = -0.59F$$

$$E_{cell}^{0} = 0.59$$

$$E_{cell} = E^{\circ} - \frac{0.0591}{n} \log K_{c}$$

$$0.59 = \frac{0.0591}{1} \log Kc$$

$$K_c = 10^{10}$$

20. An organic compound 'P' having the molecular formula $C_5H_{10}O$ treated with dil H_2SO_4 gives two compounds, Q & R both gives positive iodoform test. The reaction of $C_5H_{10}O$ with dil H_2SO_4 gives reaction 10^{15} times faster then ethylene. Identify organic compound of Q & R. Give the reason for the extra stability of P.

Sol.

$$C_{5}H_{10}O$$
 is $H_{2}C$
 CH_{3}
 C

Highly stable carbocation

P is stabilized by resonance