

THE CENTRAL BOARD OF SECONDARY EDUCATION

MATHS-II

CONTENT
 PART - B

Unit 3 - Coordinate Geometry 1-76
Straight Lines 2
> Conic Sections 32
> Introduction to Three-dimensional Geometry 54
Unit 4 - Calculus 77-101
Limits and Derivatives 77
Unit 5 - Mathematical Reasoning 102-122
> Mathematical Reasoning 102
Unit 6 - Statistics and Probability 123-175
> Statistics 123
> Probability 153

10. Straight line

Content:

Topics:

- Straight line
$>$ Definition
- Slope of a line
> Slope of a line when coordinates of any two points on the line are given
* Conditions for parallelism of lines in terms of their slopes:
* Conditions for perpendicularity of lines in terms of their slopes:
- Angle between two lines

■ Collinearity of three points:

- Various Forms of the Equation of a Line Point-slope form;
> Point-slope form:
> Two point form
> slope-intercept form: Unleash the topper in you
> Intercept form
> Normal form
■ Distance between two parallel lines
- Concurrent lines

Straight line:

Definition:

Let us start our discussion with the very beginning by defining line.

A line is something which has no end points. It can be extended both the sides

If a straight line in the coordinate plane makes an angle with $O X$, then $m=\tan$ is called the slope or gradient of the line which can be zero, positive or negative. The slope of the X -axis and of the straight lines parallel to the X -axis will be zero. The slope of the Y-axis or of a line parallel to the Y - axis is undefined.
The slope of a straight line passing through two points (x_{1}, y_{1}) and ($x_{2} \cdot y_{2}$) is $y 2-y 1 / x 2-x 1$ and in particular slope of a line passing through the origin and the point (x, y) is y / x.

Fig 1.0 - Diagram of a staright line

STANDARD EQUATIONS:

\checkmark Equation of the X-axis is $\mathrm{y}=0$.
\checkmark Equation of the Y-axis is $x=0$.
\checkmark Equation of a straight line parallel to the X-axis is $y=c$ which lies above or below the X -axis according as $\mathrm{c}>0$ or $\mathrm{c}<0$ respectively.
\checkmark Equation of a straight line parallel to the Y-axis is $x=k$ which lies to the right or to the left of the Y - axis according as $\mathrm{k}>0$ or $\mathrm{k}<0$ respectively.
\checkmark Equation of a straight line in the slope is $y=m x+c$, where m is the slope and c is the Y-intercept of the line. This line cuts the positive or the negative Y -axis at the point ($0, \mathrm{c}$) according as the Y -intercept c is >0 or $<$ 0 respectively.
\checkmark Equation of a straight line in the intercept form is $x / a+y / b=1$, where a and b are called the X-intercept and the Y-intercept respectively. If $a>0$, the line cuts the positive X -axis and if a < Othe line cuts the negative X -axis. Similarly the line cuts the positive or the negative Y-axis according as $b>0$ or $\mathrm{b}<0$ respectively.
\checkmark Equation of a straight line in the normal form is $x \cos +y \sin =p, p>0 ; O N=p$ is the length of the normal (perpendicular from the origin on the line) which makes an angle with OX.
\checkmark Equation of a straight line in the two point form passing through the two given points ($x 1, y 1$) and (x_{2}, y_{2}) is $y-y_{1} / x-x_{1}=y_{2}-y_{1} / x_{2}-x_{1}$
\checkmark Equation of a straight line in the point -slope form is $y-y_{1}=m\left(x-x_{1}\right)$, where m is the slope of the line passing through the point $\left(x_{1}, y_{1}\right)$.
\checkmark Equation of a straight line passing through the point of intersection of the straight lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is $\left(a_{1} x+b_{1} y+c_{1}\right)+k\left(a_{2} x+b_{2} y+c_{2}\right)$ = 0

TIP NOTE:

\checkmark Area of the triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ is -

$$
A=1 / 2\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}
$$

Fig 2.0 Area of triangle
\checkmark If the area of the triangle ABC is zero, then three points A, B and C lie on a line, i.e., they are collinear.

Fig 3.0 Area of triangle is zero

QUIZ: (Before checking the solution, first try it by yourself)

1. Find the equation of the line, which makes intercepts -3 and 2 on the x and y - axes respectively.
2. Equation a line is $3 x-4 y+10=0$. Find its
(i) slope,
(ii) X and y -intercepts.
3. Show that two lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$, where b_{1}, b_{2} is not equal to (i.e.!=) 0 are:
(i) Parallel if $\mathrm{a}_{1} / \mathrm{b}_{1}=\mathrm{a}_{2} / \mathrm{b}_{2}$,
(ii) Perpendicular if $a_{1} a_{2}+b_{1} b_{2}=0$

Solutions:

1. Here, $a=-3$ and $b=2$. By intercept form, equation of the line is

$$
x /(-3)+y / 2=1 \text { or } 2 x-3 y+6=0
$$

2. (i) Given, equation $3 x-4 y+10=0$ can be written as-

$$
y=(3 / 4) x+(5 / 2)
$$

If we compare this with $y=m x+c$, we have slope of the given line as $m=3 / 4$
(ii) Equation $3 x-4 y+10=0$ can be written as-

$$
3 x-4 y=-10 \text { or } x /(-10 / 3)+y /(5 / 2)=1
$$

Here, $a=-10 / 3$ and y-intercept as $b=5 / 2$, if you compare it with the intercept equation.
3. Given, lines can written as-

$$
\begin{align*}
& y=-\left(a_{1} / b_{1}\right) x-\left(c_{1} / b_{1}\right) \tag{1}\\
& y=-\left(a_{2} / b_{2}\right) x-\left(c_{2} / b_{2}\right) \tag{2}
\end{align*}
$$

Slopes of the lines (1) and (2) are $m_{1}=-a_{1} / b_{1}$ and $m_{2}=-a_{2} / b_{2}$, respectively. Now
(i) Lines are parallel, if $m_{1}=m_{2}$, which gives-

$$
-\left(a_{1} / b_{1}\right)=-\left(a_{2} / b_{2}\right) \text { or }\left(a_{1} / b_{1}\right)=\left(a_{2} / b_{2}\right)
$$

(ii) Lines are perpendicular, if $\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1$, which gives-

$$
\left(a_{1} / b 1\right) *\left(a_{2} / b_{2}\right)=-1 \text { or } a_{1} a_{2}+b_{1} b_{2}=0
$$

Slope of a line:

If θ is the inclination of a line I , then $\tan \theta$ is called the slope or gradient of the
2. A line parallel to y-axis makes an angle of 90° with x - axis, so its slope is $\tan \frac{\pi}{2}=\infty$.

Slope of Line when Passing from two given points:
If $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ So $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

line I.

- The slope of a line whose inclination is 90° is not defined.
- The slope of a line is denoted by m .
- Thus, $m=\tan \theta, \theta \neq 90^{\circ}$
- It may be observed that the slope of x-axis is zero and slope of y-axis is not defined.

Slope of a line when coordinates of any two points on the line are given:
slope of line I $=m=\tan \theta$. $=(y 2-y 1) /(x 2-x 1)$

Conditions for parallelism of lines in terms of their slopes:

Two non vertical lines I1 and I2 are parallel if and only if their slopes are equal.
$\mathrm{m} 1=\mathrm{m} 2$.
$\tan \alpha=\tan \beta$.

Conditions for perpendicularity of lines in terms of their slopes:

Two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other $\mathrm{m} 1 \mathrm{~m} 2=-1$.

Angle between two lines

ANGLE BETWEEN TWO STRAIGHT LINES:

Fig 4.0 Angle between two straight lines
(1) The angle between the straight lines $y=m_{1} x+c_{1}$ and $y=m_{2} x+c_{2}$ is given by$\tan =\left|m_{2}-m_{1}\right| /\left|1+m_{2} m_{1}\right|$ These lines are parallel if $m_{1}=m_{2}$ and perpendicular if $m_{1} m_{2}=-1$
(2)The angle between the straight lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ is given by

$$
\tan =\left|a_{1} b_{2}-a_{2} b_{1}\right| /\left|a_{1} a_{2}+b_{1} b_{2}\right|
$$

QUIZ: (Before checking the solution, first try to do it yourself)

1. Line through the points $(-2,6)$ and $(4,8)$ is perpendicular to the line through the points $(8,12)$ and $(x, 24)$. Find the value of x ?

Solution:

Slope of the line through the points $(-2,6)$ and $(4,8)$ is-
$m_{1}=((8-6) /(4-(-2)))=2 / 6=1 / 3$
Slope of the line through the points $(8,12)$ and $(x, 24)$ is-
$m_{2}=((24-12) /(x-8))=12 /(x-8)$
Since two lines are perpendicular,m1.m2=-1, which gives-
$(1 / 3) *(12 / x-8)$ or $x=4$
Distance of a point from a straight line:
The distance of the point ($x 1, y 1$) from the line $A x+B y+C=0$, is $\left|A x_{1}+B y_{1}+C\right| /\left|\operatorname{sqrt}\left(A^{2}+B^{2}\right)\right|$

TIP NOTE:

When the point $\left(x_{1}, y_{1}\right)$ and the origin lie on the opposite sides of the straight line $A x+B y+C=0$, then $d=\left(A x_{1}+B y_{1}+C\right) / s q r t\left(A^{2}+B^{2}\right)$ gives a positive value and when the point and origin lie on the same side of the line then d gives a negative value and that is why modulus sign is used for d.

The obtuse angle (say ϕ) can be found by using $\boldsymbol{\phi}=\mathbf{1 8 0 0} \mathbf{- \theta}$.

Collinearity of three points:

three points are collinear if and only if slope of $A B=$ slope of $B C$.

ANGLE BISECTORS:

If straight lines $a_{1} x+b_{1} y+c_{1}=0$ and $a_{2} x+b_{2} y+c_{2}=0$ intersect, then the equations of the bisectors of the angles between the lines are-
$\left(a_{1} x+b_{1} y+c_{1} / \operatorname{sqrt}\left(a_{1}{ }^{2}+b_{1}{ }^{2}\right)\right)= \pm\left(a_{2} x+b_{2} y+c_{2} / \operatorname{sqrt}\left(a_{2}{ }^{2}+b_{2}{ }^{2}\right)\right)$

CONCURRENCE OF THREE STRAIGHT LINES:

If the straight lines $a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0$ and $a_{3} x+b_{3} y+c_{3}=0$ are concurrent; then $a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+b_{1}\left(c_{2} a_{3}-c_{3} a_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)=0$

Fig 5.0 Point of concurrency

The condition can be expressed in terms of determinant as-

$|$| a_{1} | b_{1} | c_{1} |
| :--- | :--- | :--- |
| a_{2} | b_{2} | c_{2} |
| a_{3} | b_{3} | c_{3} |

POSITION OF TWO POINTS WITH RESPECT TO A STRAIGHT LINE:

Let $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ be two given points and $a x+b y+c=0$ be the equation of a given straight line.
\checkmark If $\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}$ and $\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{c}$ have the same sign, then the given points lie on the same side of the given line.
\checkmark If $\mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{c}$ and $\mathrm{ax}_{2}+\mathrm{by}_{2}+\mathrm{c}$ have opposite sign, then the given points lie on the opposite sides of the given line.

Quiz: (Before checking the solution, try to solve it by yourself)

1. Find the equation of a line perpendicular to the line $x-2 y+3=0$ and passing through the point $(1,-2)$.
2. Find the distance between the parallel line $3 x-4 y+7=0$ and $3 x-4 y+5=0$

Solution:

1. Given, line $x-2 y+3=0$ can be written as -

$$
y=(1 / 2) x+(3 / 2)
$$

Slope of the line (1) is $m 1=1 / 2$. Therefore, slope of the line perpendicular to line (1) is -
$m 2=-(1 / m 1)=-2$
Equation of the line with slope -2 and passing through the point ($1,-2$) is-$Y-(-2)=-2(x-1)$ or $y=-2 x$, which is the required equation.

2. Here, $A=3, B=-4, C 1=7$ and $C 2=5$,

 Therefore, the required distance is$$
d=|7-5| / \operatorname{sqrt}\left(3^{\wedge} 2+(-4)^{\wedge} 2\right) \mid=2 / 5
$$

Different forms of the equation of a straight line:

1. Slope intercept form of a line:

The equation of a line with slope m and making an intercept c on $y-a x i s$ is $y=m x+c$

The equation of a line with slope m and making an intercept c on x - axis is $y=m(x-c)$
2. Point - slope form of a line:

The equation of a line which passes through the point (given) $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and has the slope ' m ' is
$y-y_{1}=m\left(x-x_{1}\right)$.

3. Two point form of a line:

The equation of a line passing through two points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is $y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$

4. Intercept form of a line:

The equation of a line which cuts off intercepts ' a ' and ' b ' respectively from the x -axis and $\mathrm{y}-\operatorname{axis}$ is $\frac{x}{a}+\frac{y}{b}=1$.
5. Normal form or Perpendicular form of a line:

The equation of the straight line upon which the length of the perpendicular from the origin is p and this Perpendicular makes an angle α with x - axis is
6. Distance form of a line:

The equation of the straight line passing through ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and making an angle θ with the +ve direction of x -axis is $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$
Where r is the distance of the point (x, y) on the line from the point $\left(x_{1}, y_{1}\right)$

Transformation of general equation in different standard forms:

1. Transformation of $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ in the slope intercept form $\mathrm{y}=\mathrm{m} \mathrm{x}+\mathrm{c}$
$y=\left(-\frac{A}{B}\right) x+\left(-\frac{C}{B}\right)$
This is of the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$, where
$m=-\frac{A}{B}=-\frac{\text { cof ficient of } x}{\text { cof ficient of } y}$, and intercept on $y-$ axis $=-\frac{C}{B}=-\frac{\text { constent }}{\text { cof ficient of } y}$
2. Transformation of $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ in intercept form $\frac{x}{a}+\frac{y}{b}=1$
$\frac{x}{\left(-\frac{C}{A}\right)}+\frac{y}{\left(-\frac{C}{B}\right)}=1$
Intercept on x -axis $=-\frac{C}{A}=-\frac{\text { cons } \tan t \text { term }}{\operatorname{cof} \text { ficient of } x}$, Intercept on y-axis
$=-\frac{C}{B}=-\frac{\text { constant term }}{\text { cof ficient of } y}$
3. Transformation of $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ in intercept form $x \cos \alpha+y \sin \alpha=p$

$$
\begin{aligned}
& -\frac{A}{\sqrt{A^{2}+B^{2}}} x-\frac{B}{\sqrt{A^{2}+B^{2}}} y=\frac{C}{\sqrt{A^{2}+B^{2}}} \\
& \text { Here } \cos \alpha=-\frac{A}{\sqrt{A^{2}+B^{2}}} \text { and } \sin \alpha=-\frac{B}{\sqrt{A^{2}+B^{2}}} ; p= \pm \frac{C}{\sqrt{A^{2}+B^{2}}}
\end{aligned}
$$

Distance between two parallel lines:

Step (i): Find the co-ordinates of any point on one of the given line, by putting $x=0$ and $y=0$

Step(ii): The perpendicular distance of this point from the other line is the required distance between the lines.

$$
x \cos \alpha+y \sin \alpha=p
$$

Concurrent Lines:

Three of more than three straight lines are said to be concurrent if they pass through a common point i.e., they meet at a point.

Condition of concurrency of three lines:

$a_{1}\left(b_{2} c_{3}-b_{3} c_{2}\right)+b_{1}\left(c_{2} a_{3}-c_{3} a_{2}\right)+c_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)=0$
EQUATIONS OF FAMILY OF LINES THROUGH THE INTERSECTION OF TWO LINES
$\mathrm{A}_{1} x+\mathrm{B}_{1} y+\mathrm{C}_{1}+k\left(\mathrm{~A}_{2} x+\mathrm{B}_{2} y+\mathrm{C}_{2}\right)=0$
where k is a constant and also called parameter.
This equation is of first degree of x and y, therefore, it represents a family of lines.

DISTANCE BETWEEN TWO PARALLEL LINES

Working Rule to find the distance between two parallel lines:
(i) Find the co-ordinates of any point on one of ht egiven line, preferably by putting $x=0$ and $y=0$.
(ii) The perpendicular distance of this point from the other line is the required distance between the lines.

Questions and Answers

1 Mark Each:

1. Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.

Solution:

Here we have,
Points ($x,-1$), $(2,1)$ and $(4,5)$ are collinear,
Slope of $A B=$ Slope of $B C$
Then, $(1+1) /(2-x)=(5-1) /(4-2)$
$2 /(2-x)=4 / 2$
$2 /(2-x)=2$
$2=2(2-x)$
$2=4-2 x$
$2 x=4-2$
$2 x=2$
$x=2 / 2$
$=1$
Thus, The required value of x is 1 .
2. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $P(0,-4)$ and $B(8,0)$.

Solution:

Here we have,
The co-ordinates of mid-point of the line segment joining the points $P(0,-4)$ and $B(8,0)$ are $(0+8) / 2,(-4+0) / 2=(4,-2)$
The slope ' m ' of the line non-vertical line passing through the point ($x 1, y 1$) and $(x 2, y 2)$ is given by $m=(y 2-y 1) /(x 2-x 1)$ where, $x \neq x 1$
The slope of the line passing through $(0,0)$ and $(4,-2)$ is $(-2-0) /(4-0)=-1 / 2$

Thus, The required slope is $-1 / 2$.
3. Without using the Pythagoras theorem, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are the vertices of a right-angled triangle.

Solution:

Given,
The vertices of the given triangle are $(4,4),(3,5)$ and $(-1,-1)$.
The slope (m) of the line non-vertical line passing through the point ($x 1, y 1$) and $(x 2, y 2)$ is given by $m=(y 2-y 1) /(x 2-x 1)$ where, $x \neq x 1$
So, the slope of the line $A B(m 1)=(5-4) /(3-4)=1 /-1=-1$
the slope of the line $B C(m 2)=(-1-5) /(-1-3)=-6 /-4=3 / 2$
the slope of the line $C A(m 3)=(4+1) /(4+1)=5 / 5=1$
It is observed that, $\mathrm{m} 1 . \mathrm{m} 3=-1.1=-1$
Hence, the lines $A B$ and $C A$ are perpendicular to each other So,given triangle is right-angled at $A(4,4)$
And the vertices of the right-angled Δ are $(4,4),(3,5)$ and $(-1,-1)$
4. Find the equation of the line passing through the point $(5,2)$ and perpendicular to the line joining the points $(2,3)$ and $(3,-1)$.

Solution:

Here we have points $A(5,2), B(2,3)$ and $C(3,-1)$

Firstly, we find the slope of the line joining the points $(2,3)$ and $(3,-1)$
Slope of the line joining two points $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\therefore \mathrm{m}_{\mathrm{BC}}=\frac{-1-3}{3-2}=-\frac{4}{1}=-4$
It is given that line passing through the point $(5,2)$ is perpendicular to $B C$
$\because \mathrm{m}_{1} \mathrm{~m}_{2}=-1$
$\Rightarrow-4 \times \mathrm{m}_{2}=-1$
$\Rightarrow \mathrm{m}_{2}=1 / 4$
Therefore slope of the required line $=1 / 4$
Now, we have to find the equation of line passing through point $(5,2)$
Equation of line: $y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-2=\frac{1}{4}(x-5)$
$\Rightarrow 4 y-8=x-5$
$\Rightarrow \mathrm{x}-5-4 \mathrm{y}+8=0$
$\Rightarrow x-4 y+3=0$
Hence, the equation of line passing through the point $(5,2)$ is $x-4 y+3=0$
5. Find the Slope of a line which cuts off intercepts of equal lengths on the axes.

Solution:

We know that the equation of line in intercept form is
$\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1$
Where a and b are the intercepts on the axis.
Given that $\mathrm{a}=\mathrm{b}$
$\Rightarrow \frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{a}}=1$
$\Rightarrow \frac{x+y}{a}=1$
$\Rightarrow \mathrm{x}+\mathrm{y}=\mathrm{a}$
$\Rightarrow \mathrm{y}=-\mathrm{x}+\mathrm{a}$
$\Rightarrow y=(-1) x+a$
Since, the above equation is in $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ form
So, the slope of the line is -1 .
6. Find the distance between $P(x 1, y 1)$ and $Q(x 2, y 2)$ when $P Q$ is parallel to the y-axis,

Solution:

Here we have,

