

GRADUATE PHARMACY APTITUDE TEST

NATIONAL TESTING AGENCY (NTA)

VOLUME – I PART - 3

PHARMACUETICAL CHEMISTRY

PHARMACUETICAL ANALYSIS & CHROMATOGRAPHY

CONTENT

PHARIVIACEUTICAL ANALYSIS	
1. Introduction	1-4
2. Normality	4-5
3. Molarity & Molality	5-7
4. Male Fraction	8
5. Percentage Concentration	8-10
6. PPM & PPB	10-11
7. Mole Fraction	11-12
8. Primary Standard Substance	12-14
9. Secondary Standard Substance	14-15
10. Error	16-17
11. Non – Aqueous Titration	17-26
12. Precipitation Titration	26-33
13. Complexometric Titration	33-39
14. Diazotization Titration	39
15. Conductometry	40-44
16. Potentiometry	44-54

17. Polarography	54-57
18. Gravimetric Analysis	57-61
CHROMATOGRAPHY	
19. Introduction	62-67
20. TLC	67-74
21. HPLC	75–76
22. Paper Chromatography	77-79
23. Column Chromatography	79-84
24. Flash Chromatography	85-86
25. Gas chromatography	86-95
26. Size exclusion Chromatography	96
27. Ion Exchange Chromatography	97-98
28. UV – Spectroscopy	98-114
29. IR – Spectroscopy	114-126
30. FTIR	126-128
31. NMR	128-152
32. Mass – Spectroscopy	152-162

PHARMACOGNOSY	
33. Introduction	163
34. Plant Tissue	164
35. Various System of Medicine	165-166
36. Classification of Crude Drug	166-174
37. Quality Controls &	174-180
Standardization of Crude Drug	
38. Carbohydrate	180-184
39. Glycoside	184-201
40. Biogenetic Pathway	210-205
41. Mineral Origin Drug	205-206
42. Fiber	207-208
43. Plant Hormone	208-209
44. Volatile Oil	210-212
45. Enzyme	213-214
46. Tannins	214-218
47. Resin	218-220
48. Ayurveda: C Formulation	221
49. Alkaloid	221-246

BIOTECHNOLOGY	
50. Immunology	247-253
51. Hypersensitivity Reaction	253-254
52. Identification Test	255-256
53. Vaccine & Sera	256-259

Pharmaceutical Analysis

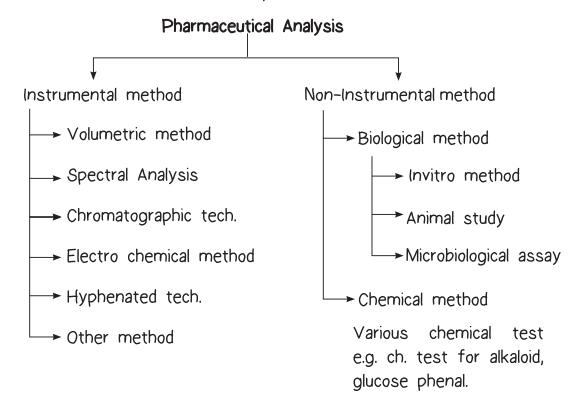
Definition, Type and scope

A. **Definition**: It is a technique to identify or/and quantify any sample, compound or substance by using manual method, chemical method, Instrumental method.

B. Type of Pharmaceutical Analysis:

- 1. Qualitative Analysis
- 2. Quantitative Analysis
 - a. Qualitative Analysis: (determine present or absent) completely unknown sample is taken & analysed to presence or absence of the particular substance.
 - b. Quantitative Analysis: Determine of the quantity in number, weight, length or any other measurement parameter. Exact quantity of the sample is quantified is this method.

C. Classification of Pharmaceutical Analysis Laboratory:


- a. Government Regulatory Agencies, Established by central & state govt. and these are continuously monitoring and analysis the drug sample, e.g. IPC, CDSCO (Central drug standard central organisation)
- b. Manufacturer of drugs
- c. Manufactures of Row material of drug
- d. Universities and Non-commercial Research centers
- f. Consulting Laboratories

D. SCOPE:

- a. Examination of raw material
- b. Analysis of various drugs sample,
- c. Qualitative quantitative analysis of sample
- d. diagnosis of various disease by chemical Analysis.

- e. Determination of Radio active compound.
- f. Determination of Natural phytoconstiment.
- g. Determination of different sample of water.

Instrumental method

- A. Volumetric Method (Titrimetia method)
 - 1. Acid Base- A.q.
 - 2. Redox titration/ oxidation Reduction titration
 - 3. Complexo metric titration
 - 4. Precipitation titration
- B. Spectral Analysis
 - 1. Colorimetry (covered the visible range) (Measured by visible light) 400-800nm
 - 2. UV- visible spectroscopy
 - 3. Infra Red (IR) spectroscopy (determination of function group)

Pharmacentical analysis

- 4. NMR Spectroscopy (determined the structure of compound, H and C etc.)
- 5. Mass spectroscopy
- 6. Spectro fluorometry
- C. Chromatographic technique
 - 1. Planner Chromatography → Paper Chromatography

→ TLC

→ HPTLC

2. Column Chromatography

Column (Gravity) Chromatography

Gas Chromatography

Flash Chromatography

HPLC

Size Exclusion Chromatography

Ion Exchange Chromatography

Affinity Chromatography

UPLC (Utra performance liquid Chromatography)

DCCC (Droplet counter current Chromatography)

- D. Electro chemical Method
 - 1. Conductometry
 - 2. Coulometry
 - 3. Voltametry
 - 4. Potentiometry
- E. Hyphenated technique
 - 1. GC MS (Gas Chromatography mass spectroscopy)

- 2. LC MS
- 3. LC NMR
- 4. GC NMR
- 5. LC MS MS
- 6. ICP OES (inductive couple of plasma optical emission spectroscopy)
- 7. ICP AAS
- 8. ICP MS

F. Other Method

- 1. DSC (differential scanning calorimetry)
- 2. TGA (measured Thermal properties) (Thermo gravimetry Analysis)
- 3. Kjeldehl method (N2 content in the organic compound)
- 4. RIA (Radio Emission Assay determine Antigen present in the serum of the patient
- 3. Auto radiography
- 4. Flame photometry (determine many Elements) → like C, H, N, O, S
- 5. Elemental Analysis

Normality (N)

No. of gram equivalent of solute present per liter of soln (Detonated by 'N')

$$N = \frac{\text{No. of gram equivalent of sulute}}{\text{vol of sol}^{\text{n}} \text{ (in ltr)}} = gm/L$$

$$= \text{gram equivalent}$$

A. Gram equivalent of Acid =
$$\frac{M.W}{\text{No. of replacement ion or Basicity of the acid}}$$

e.g. HCl \rightarrow H⁺ + Cl⁻ (replacement)
 $H_2SO_4 \longrightarrow 2H^+ + SO_4^{2-}$ (Two replacement ion)

Gram eq. =
$$\frac{M.w}{\text{No.of replacement}} = \frac{98}{2} = 1\text{N}$$

In case of dibasic acid 1N = 1/2 M

In case of tribasic acid 1N = 1/3 M

B. Gram equivalent of Acid = $\frac{M.W}{\text{No. of replacement ion or Basicity of the acid}}$

$$NaOH \longrightarrow Na^+ + OH^- = \frac{40}{1} = 40g/L = 1N$$

$$Na_2Co_3 \rightarrow 2N_a^+ + Co_3^{2-} = \frac{106}{2} = 53g/L = 1N$$

C. Gram equivalent in Redox Rxⁿ Change in the Oxidation number

$$KM_nO_4 \Longrightarrow K^+ + M_nO_4^-$$

In Acidic medium
$$\underset{(+7)}{M_n} \overset{O_4^-}{\underset{(-8)}{\circ}} + \underset{(+6)}{e} \overset{M}{\underset{(+6)}{\rightarrow}} \overset{O_4^{2-}}{\underset{(+6)}{\circ}}$$

eq wt
$$\frac{158}{1}$$
 = 158g/L = 1 N

Neutial Medium
$$M_n O_4^- + 4H^+ + 3e \rightarrow M_n O_2 + 2H_2O$$

eq wt
$$\frac{158}{3}$$
 = 52.66g/L = 1 N

D. Acidic Medium $M_nO4 + 3H^+ + 5e^- \rightarrow M_n^{2+} + 4H_2O$

eq wt
$$\frac{158}{3}$$
 = 31.69g/L = 1 N

Molarity and Molality

Molarity: Number of mole of the solute present is one litre of the solⁿ. Denoted by 'M'.

$$M = \frac{\text{No.of Moles of solute}}{\text{Vol.of sol}^{n} (\text{in litre})} = \text{mole}/L$$

Volume may changed due to temp. so it is temp. dependent.

No. of mole =
$$\frac{\text{Mass given}}{\text{Gram atomic mass}}$$

E.g.(1) What is the molarity of solⁿ prepared by dissolving 15 g of NAOH in enough water to make total of 225 ml of solⁿ.

Molarity =
$$\frac{\text{No. of mole of solute}}{\text{Vol. of sol}^n \text{ (in Itr)}}$$

No. of mole of solute =
$$\frac{\text{Mass given of NaOH}}{\text{Mass is given of NaOH}}$$

$$= \frac{15}{40} = 0.375 \text{ mole NaOH}$$
Molarity of NaOH
$$= \frac{0.375 \text{ mole}}{0.225l}$$

$$= 1.67 \text{ M NaOH}$$

Prepⁿ of 1 M NaOH solⁿ = 40g of NaOH will be dissolved in the sufficient amount of the distilled water and final value will be 1000 ml.

E.g(2) What is the molarity of a solⁿ that contain 1.724 mole of H_2SO_4 in 2.50L of solⁿ.

Molarity =
$$\frac{\text{No. of mole of solute}}{\text{Vol. of sol}^n \text{ (in ltr)}}$$

= $\frac{1.724 \text{ mole}}{2.50}$
= 0.688 M of H₂SO₄

E.g(3) What is the molarity of solⁿ prepared by dissolving 250 g of HCL (g) in enough water to make 150.0 ml of solⁿ.

Molarity =
$$\frac{\text{No. of mole of solute}}{\text{Vol. of sol}^n \text{ (in Itr)}}$$

$$Mole = \frac{Mass given}{Gram atomic mass}$$

$$= \frac{25}{36.5}$$
Mole = 0.684 Mole of HCL
$$= \frac{0.684 \text{ mole}}{0.150 \text{ l}}$$
= 4.56 M of HCL

E.g (4) How many g of NaOH present in 400 ml of 0.5M soln of NaOH.

Molarity =
$$\frac{\text{No. of mole of solute}}{\text{Vol. of sol}^n \text{ (in ltr)}}$$

1000 ml of 1 M NaOH = 40g
500 ml of 0.5M NaOH = 20g
400 ml of 0.5M NaOH = 0.5m
= $2\cancel{0} \times \frac{4\cancel{0}\cancel{0}}{\cancel{1\cancel{0}\cancel{0}\cancel{0}}}$
= 8 gm

Molality (m)

No. of moles of the solute present in 1 kg of the solvent.

It is rarely used term =
$$\frac{\text{mass}}{\text{wt}}$$

Molarity = $\frac{\text{No. of mole of solute}}{\text{Mass of the solvent (in kg)}}$

Molality is temp. independent because mass/wt of the solvent will not change due to temp.

Prepⁿ of 1 m NaOH Solⁿ 40g of NaOH will be dissolved in the 1 kg of the distilled water. So the final volume may be more than 1 kg.

Formal Concentration (f)

- It is calculated based on the formula wt of the chemicals per ltr of the soln
- Denoted by 'f'
- It is rarely used term.

$$F = \frac{\text{Formula wt of the solute}}{\text{Vol. of the sol}^n \text{ (in ltr)}}$$

Formal Con^c indicate moles of the original chemical formula in the soln without considering the species actually exist in the solⁿ.

Molar Conc is the conc of the species which is actually exist in the sol.

Example (1)
$$Na_2CO_3 \rightarrow 106g \rightarrow 1M$$

$$Na_2CO_3 \rightarrow 2Na^+ + Co_3^{2-}$$
 (in distilled water)

In water some amount of CO_3^{2-} will convert in to HCO_3^{-} and $H_2CO_3^{-}$

Acidic medium $Co_3^{2-} + H^+ \rightarrow HCo_3^-$

$$HCo_3^- + H^+ \rightarrow H_2Co_3$$

Example (2) $CaCO_3 \rightarrow 100g$

$$CaCO_3 \rightarrow Ca^{2+} + CO_3^{2-}$$
 (in distilled water)

In water some amount of ${\rm CO^{2}}_{3}$ will convert in to ${\rm HCO}_{3}$ and ${\rm H_{2}CO_{3}}$

Acidic medium $CO_3^{2-} + H^+ \rightarrow HCO_3^-$

$$HCO_3^- + H^+ \rightarrow H_2CO_3$$

Percent Concentration (%w/w, %v/v, %w/v)

Many time concⁿ is expressed in term of % or part per hundred.

A.
$$\%w/w = \frac{\text{Wt of the solute ing}}{\text{Wt of the sol}^n \text{ ing}} \times 100$$

Example (1) preparation of 10% w/w NaCl.

$$\%w/w = \frac{10 \text{ g of NaCL}}{100 \text{ g the sol}^n} \times 100$$

$$\% \text{ w/w} = 10\% \text{ NaCL}$$

B.
$$\%v/v = \frac{\text{Vol. of solute (in ml)}}{\text{Vol. of sol}^n \text{ (in ml)}} \times 100$$

Example (2) preparation of 10% v/v acetic acid.

$$\%v/v = \frac{10 \text{ ml acetic acid}}{100 \text{ ml sol}^n} \times 100$$

% v/v of acetic acid. = 10%

C.
$$\sqrt[m]{w/v} = \frac{\text{mass of the solute}}{\text{Vol. of the sol}^n(\text{in ml})} \times 100$$

Example (3) preparation of 10% w/v NaOH soln

$$\% w/v = \frac{10 \text{g NaOH}}{100 \text{ ml sol}^n} \times 100$$

= 10 \% w/v (g/m)

Example (4) Calculate the normality of the 20% w/v NaOH soln.

20g NaOH
$$\rightarrow$$
 100 ml of solⁿ

4g of NaOH in 100 ml = 1 N NaOH

20g of NaOH in 100 ml

$$=\frac{20}{4} = 5N$$
 NaOH

Example (6) 10 g of NaCl is present in 100 mg of solⁿ. find wt/w%. If density of solⁿ is 1.2g /m/

wt/wt% =
$$\frac{\text{mass of solute}}{\text{mass of sol}^n} \times 100$$

= $\frac{10 \text{ g}}{120 \text{ g}} \times 100 = 8.33\%$

$$d(f) = m/v \Rightarrow 1.2 = m /100 \Rightarrow 1.2 \times 100 = m$$

$$m = 120 g$$

Example (7) A sugar solⁿ is 10% (w/v). Find (w/w%) if d of solⁿ = 125g 10 g sugar in 100 ml

$$f = \frac{m}{v} \Rightarrow 1.25 \times \frac{m}{100} = 125g$$

$$w/w\% = \frac{\text{mass of solute}}{\text{mass of sol}^{\text{n}}} = \frac{10}{125} \times 100 \Rightarrow 8\% w/w$$

PPM (Parts per million) & PPB (Parts per Billion)

PPM: It is frequently used to express the concⁿ of very solute solⁿ.

It is also used to express the concⁿ of impurities in the pharmaceuticals.

ppm =
$$\frac{\text{Mass of solute (ing)}}{\text{Mass of sol}^n \text{ (ing)}} \times 10^6$$

Example (1) Prepⁿ of 100 PPM of chloride from NaCl.

Chloride 100 PPM
$$\frac{100}{1000000} \times 100\%$$

Chloride 100 PPM =
$$0.01\%$$

M.W. of NaCl = 56.5, Atomic wt of Cl = 35.5

CI 100 PPM =
$$\frac{56.5}{35.5} \times 0.01$$

= 0.01648 g dissolved in 100 ml of distilled water

Example (2) $\rm Conc^n$ of $\rm Na_2CO_3$ in sea water is 53 PPM find mass of $\rm Na_2CO_3$ present in 250 ml of water.

$$PPM = \frac{\text{mass of solute in gram}}{\text{mass of sol}^{\text{n}} \text{ in gram}} \times 10^{6}$$

$$PPM = 53$$

Mass of solute in gram = ?

Mass of sol^n in gram = 250 g

$$53 = \frac{\text{mass of solute in gram}}{250} \times 10^{6}$$

$$53 \times 250$$

 13250×10^{-6} gram = mass of Na_2CO_3 in 250g of water.

$$1.325 \times 10^{-2} = 0.01325$$

PPB → Parts per Billion = 10^q

no. of
$$PPB = \frac{\text{Mass of solute}}{\text{mass of solution}} \times 10^9$$

Relation between Normality and molarity

$$X = \frac{N}{M}$$
 $X = \text{No. of OH}^- \text{ or H}^+ \text{ ion}$ $N = \text{Normality}$

......

$$M = Molarity$$

$$N = M \times X$$

$$M = \frac{N}{X}$$

Ex. Find normality of 0.4M H_3PO_4 Sol^n

$$N = MX$$

$$N = ?$$

$$M = 0.4$$

$$N = 0.4 \times 3 = 12 N$$

Mole fraction (X) (η)

no. of moles
$$\frac{1}{4}$$
 $\frac{3}{4}$

Q. A Sol^n has 46 % (w/w) ethanol in water. Find mole fraction of ethyl alcohol.

Mole fraction of
$$C_2H_5OH=\frac{No. \text{ of mole of } C_2H_5OH}{No. \text{ of mole of } C_2H_5OH+No. \text{ of mole of } H_2O}$$

No. of mole of $C_2H_5OH=\frac{mass \text{ given}}{Molecular \text{ mass}}=\frac{46}{46}=1$

No. of mole of $H_2O=\frac{100-46}{18}=\frac{54}{18}=3$

Mole fraction of $H_2O=\frac{1}{1+3}=\frac{1}{4}=0.25$

Mole fraction of $H_2O=\frac{3}{1+3}=\frac{3}{4}=0.75$

Primary Standard Substance

Primary Standard substance

- Highly pure reagent/chemical are used to prepare standard solⁿ, which doesn't requires further standardization is known as primary standard solⁿ.
- It should be purified dried & easily available. They must stable & free from hygroscopic nature.
- 100% purity (if impurities present them 0.01-0.02%)
- High molecular weight to reduce the weighing errors.

NaOH
$$\rightarrow$$
 40 \rightarrow 0.1N \rightarrow 4g /L \rightarrow 4.1g, 3.9 g \pm 0.1 g
$$= \frac{0.1}{4} \times 100 = 2.5\% \text{ error is high}$$

$$0 - \frac{\text{Cook}}{\text{CooH}} \rightarrow 204 \rightarrow 0.1 \rightarrow 20.4 \pm 1 \text{ g}$$

$$= \frac{0.1}{20.4} \times 100 = 0.5 \text{ error is low}$$

- It should be completely dissolved under experimental condition.
- Free from any hydrated water moiety
- Primary standard substance should not be able to satisfy all the above mentioned characteristic so closely relevant substance are considered as primary standard substances.

Primary standard substance for Acid Base Titration ->

Compound Name M.w

- 1. Na₂CO₃
- 2. COOH 126 COOH 2H₂O

Oxalic acid

[phthalic acid]

3. CooH CooH

4. CH₂COOH 118 CH₂COOH

5. **COOH** 122

[Succinic acid]

6. CH₂-CH₂COOH

|
CH₂-CH₂COOH

[Adipic acid]

7. OH
O | O
S |
NH₂ [Sulphamic acid]

- 8. $Na_2B_4O_7 10H_2O$ 381 381
- q. Constant boiling HCl36.5

Primary standard Solⁿ for Redox Titration →

1. $k_2Cr_2O_7$ 294

2. KBrO₃ 167

3. KIO₃ 214

4. $Na_2C_2O_4$ 134

5. As_2O_3 Arsenic.Oxalate

6. $C_4SO_45H_2O$ Copper sulphate (Blue vitrol) (Blue vitrol) (Blue vitrol)

Precipitation titration

1. Ag 108

2. AgNO₃ 170

3. NaCl 58.5

4. KCl 75

5. KBr 119

Complaxometric Titration

1. Zn 65

2. mg 24

3. ZnCl₂ 136

4. CaCl₂ 1111

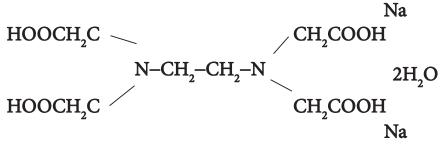
Secondary standard Substances

• A secondary standard is less stable compound of generally used for quantitative analysis of concⁿ of sec standard is determined by comparing with primary standard solⁿ

Pharmaceutical analysis

- Secondary standard solⁿ is titrated with primary standard Solⁿ to determine the concⁿ of sec stand. solⁿ
- Standardization of sec. Stand solⁿ is must before doing any quantitative analysis of pharmaceuticals
- Standardized sec. soln if used to determine the concn of analyzer.

Acid Base Titration


- 1. HCl \rightarrow 36.5
- 2. $H_2SO_4 \rightarrow 98$
- 3. NaOH \rightarrow 40
- 4. $HCIO_4 \rightarrow 100$

Redox Titration

- 1. KM_nO₄ 15.8
- 2. $(NH_4)_3$ $Ce(SO_4)_2$ $2H_2O$ 633
- 3. Na₂S₂O₃ 158

Complaxometric Titration

1. EDTA \rightarrow 372 \rightarrow (Sec std. Substance)

2. Pb $(NO_3)_2$ 331