

Rajasthan Subordinate & Ministerial Services Selection Board

Part – B Volume – 3

Pharmaceutics, Hospital and Clinical Pharmacy

RAJASTHAN PHARMACIST

CONTENTS

Pharmaceutics			
1.	Classification of dosage form	1	
2.	Tablet	1-16	
3.	Capsule	17-21	
4.	Microencapsulation	22-24	
5.	SEMI Solid Dosage Form	25-27	
6.	Suppositories	28-29	
7.	Sterilization	30-34	
8.	Filtration	35-38	
9.	Sterile Product	39-43	
10.	Ophthalmic Preparation	44-46	
11.	Aerosole	47-49	
Physical Pharmacy			
12.	Micrometrics	50-55	
Dispensing Pharmacy			
13.	Prescription	56-57	
14.	Posology	57	
15.	Incompatibility	58-59	
16.	Pharmaceutical Calculation	60	

Pharmaceutical Engineering				
17.	Distillation	61-62		
18.	Heat process	63-64		
19.	Size Reduction	64-68		
20.	Extraction	68		
21.	Mixing	69-72		
*	Hospital Pharmacy	73-111		
Clinical Pharmacy				
1.	Introduction	112-115		
2.	Modern Dispensing Aspects	116-120		
3.	Common Terminology in Medicine	121-129		
4.	Diseases Manifestations and Pathophysiology	130-138		
5.	Physiological Parameters with their Significance	139-144		
6.	Mechanism of Drug Interactions	145-154		
7.	Adverse Drug Reactions	155-164		
8.	Drug in Clinical Toxicity	163-173		
9.	Drug Dependence and Drug Abuse	174-179		
10.	Bioavailability of Drugs	180-183		
11.	Patient Counselling : The Use of Vitamins	184-194		
12.	Patient Counselling : Selected Trace Elements and Their Functions in the Body	195-200		

Pharmaceutics, Hospital and Clinical Pharmacy

Classification of Dosage form

- 1. Solid dosage form:-
- Tablet
- Capsule
- Powder
- Granule
- Lozenges \rightarrow Unit solid dosage form

2. Liquid Dosage Form:-

Inhalers

Tablet

- * Tablet is a unit dosage form that is prepared by either compression or molding method.
- * It contain drug substance with or without suitable diluent.
- * Diluent:- Other than active drug substance is called Diluent.

Type of tablet

- 1. Tablet Ingested Orally:
 - * Compressed Tablet
 - * Multiple Compressed Tablet

- * Enteric Coating Tablet (For Delayed action)
- * Sustained Action Tablet (For Controlled released tablet)
- * Sugar Coated Tablet
- * Film Coated Tablet
- * Chewable Tablet

2. Tablet used in orally (cavity):-

- e.g:- (A) Buccal Tablet \rightarrow Placed inside of check
 - * Absorbed Directly into Buccal cavity.
 - * By bass first pass metabolism e.g. Progesterone.
 - (B) Sublingual Tablet
 - * Sublingual tablet placed under the tongue.
 - * E.g.- Nitroglycerin, Erythrityl Tetra nitrate.
 - (C) Troches & Lozenges
 - * Produced local effect in mouth or throat.
 - * E.g.- Local Anesthetic, Antiseptic, Anti-bacterial Agent
 - (D) Dental Cone
 - * Compressed tablet placement in the empty socket after tooth extraction.
 - * Dissolve in 20-40 minute.

3. Tablet placed by other Route-

- E.g:- (A) Implantable tablet
 - * Inserted subcutaneously by kern injector.
 - * For Controlled Release action. Like 1 month to 1 year or more. e.g.:- contraceptive or other hormonal drug.
 - (B) Vaginal Tablet
 - * These type of tablet inserted into vaginal cavity.
 - * E.g:- Antibiotic etc.
- 4. Tablet used to prepare Solution:-
- E.g:- (A) Effervescent Tablet

- * It contain effervescing agent like sodium carbonate, Citric acid or tartaric acid.
- * They produce a solution rapidly with release of Co₂ like ENO (ENO is a Effervescent powder) But Effervescent tablet are available in the from of tablet

(B) Dispensing Tablet:-

- * They are concentration form of tablet, injected before dilution.
- * Added a given volume of water or produce solution.
- * E.g:- Silver Compound
- * Quaternary ammonium Compound.
- (C) Hypodermic Tablet:-
 - * Diluted with sterile water.
 - * Injected Parentally
 - * Hypokalemic Tablet + Sterile Water (injected).
- (d) Tablet Triturate:-
 - * Diluted with inert solid substance.
 - * Tablet Triturate (Active ingredient) + inert substance like lactose, or dextrose etc.

Tablet Ingredients

Tablet Contain \rightarrow Active Ingredient (Produce action)

→ Inactive Ingredient/Excipient/Additive

<u>Additive</u>:- Additive impart satisfactory processing, compression (Characteristic, give additional physical property, or give controlled release action.)

- E.g:- Diluents,
 - Binder,
 - Disintegrate,
 - Glident,
 - Lubricant,
 - Coloring agent- give color,
 - Flavors,
 - Sweetening agent- Coat unpleasant test,
 - Polymer & wax (for controlled action)

Diluent:-

- * Used to increase bulk of tablet
- * Diluent are filter.
- * Diluent can be used up to 801 of the total weight of tablet.
- <u>Important</u>:- All sugar contain diluents have tendency to undergo reaction drugs containing-NH₂ group. This is called mallard Reaction.

Calcium phosphate as diluent reduces bio availability of some antibiotic like tetracycline.

Type of Diluent:-

- 1. Sugar \rightarrow :- Dextrose
 - Lactose, (Cause miliary Reaction)
 - Sucrose
 - Manitol
 - Sorbitol
- 2. Polysaccharilce \rightarrow Starch , Cellulose
- 3. Inorganic Compound \rightarrow Calcium Carbonate
 - Calcium Phosphate
 - Magnesium Carbonate
- 4. Other \rightarrow Bentonite
 - Kaolin
 - Silicon Derivative

Lactose:- Lactose is widely used diluent. It have good compressibility. They are available in the form of;

- 1. α –Lactose (Hydrous)
- 2. β Lactose (Anhydrous)
- 3. Spray dried Lactose

Lactose Disadvantage:- Cause Millard reaction with amino group

Millard Reaction:- Lactose + Amino group drug + Alkaline lubricant (Mg stearate)

- Ly Tablet discolor (Due to formation of formaldehyde)
- * <u>Mannitol</u>:- used in chewable tablet due to negative heat of solution, cooling effect.
 - * Mannitol is non-hygroscopic

- * Non Carcinogenic
- * Sorbitol is optical isomer of mannitol.
- * <u>Sucrose</u>:- (Table sugar)
 - * It is a hygroscopic in nature.
 - * Used as direct compression tablet.
 - * As binder.
 - * As bulking agent.
 - * Also used as sweetener in chewable tablet.

Important: - Sugar tab.: - 90-93% Sucrose + 7-10% invert sugar

Dipac :- 97% Sucrose + 3 % invert sugar

Nutab:- 97% Sucrose + 4 % invert sugar

- * Sucrose $\longrightarrow Lnvert$ sugar (Glucose + Fructose)
- * Starch :- Directly compressible starch
 - **L** Sta Rx 1500
 - * Hydrolyzed Starch \rightarrow Emdex Celutab.
- * Granulating Agent:- used to convert the fine powder into grannies. E.g:- Water, starch, Mucilage, Tragacanth, Alcohol, Acetone.
- * <u>Binder</u>:- used to provide cohesive qualities
 - * More the binder, harder the tablet
 - * Type:- (i) Solution Binder (E.g:- Starch, sucrose, gelatin, acacia, tragacanth)
 - * (ii) Dry Binder (E.g.- Cellulose Derivative, Cross linked PVP)
- * <u>Lubricant</u>:- Reduce fraction between wall of tablet & wall of die during tablet ejection.
- * <u>Anti-adherent</u>:- Present adhesion of the tablet material to the surface of dies& Punchers.
- * <u>Glidant</u>:- Reduce inter-particle friction & improve the rate of flow of tablet granulation
- * Lubricant:- Calcium Stearate, Magnesium Stearate
- * <u>Anti-adherent</u>:- Excellent \rightarrow Talc (1-5%)
 - * Corn Starch (5-10%)

Good - Calcium stearate, Magnesium Stearate

* <u>Glidant</u>:- Excellent ightarrow - Corn Starch , Colloidal Silica

Good - Talc (1-5%)

- * <u>Disintegrate</u>:- Facilitate breaking up to tablet in contact with water GIT. By two Method
 - 1. By swelling :- Alginate , starch der. PVP
 - 2. By wetting :- SLS, Clay, Bentonite, Veegum (Mg. aluminum silicate)
- * Super disintegrate example:- Cross caremelose \rightarrow Cross linked Cellulose
 - ° Crospovidone \rightarrow Cross Linked PVP
 - $^{\circ}$ Sod. Starch glycolate \rightarrow Cross linked starch
- * Sweetening Agent :-
 - 1. Mannitol \rightarrow 72 Times sweetener than sugar
 - ° Used in chewable tablet
 - 2. Saccharine \rightarrow 500 Times sweetener than sugar
 - ° Carcinogenic
 - 3. Aspartame \rightarrow 200 times than sugar
 - Non- carcinogenic
- * Aspartam is a methyl ester of the aspartic acid/phenyl alanine dipeptide.

Manufacturing of tablet

- 1. Preparation of granule for compression
- 2. Compression of granule into tablet
- 3. Coating of tablet
- 4. Evaluation of tablet
- Preparation of Granule for Compression :-Weighing the Ingredient

ſ

Pulverization & Mixing

- * In this step solid powder ingredient are reduced to the same size.
- * Done to protect from segregation during mixing

↓

Convention of mixed

There are three method for formation of granule:-

- 1. Wet granulation
- 2. Dry granulation

spersnot Unleash the topper in yo 3. Direct Compression 1. Wet Granulation Method :-Drug + Diluent T Dry Binder is added T Blended uniformly Suitable Solvent is added Blended till wet mass formed T Wet Screening L Drying (By tray dryer or fluid bed dryer) Dry Screening (Particle size reduced) Lubrication & Compaction T Tabled formed 2. Dry Granulation step:- It apply when the product is sensitive to heat e.g. Aspirin, vitamin. Process:-Milling Ť Mixing ſ Screening Ť

- * Slug :- Described as compact mass of powder.
- 3. Direct Compression:- Uses directly compressible diluent like spray clerical lactose.

Compression

E.g.:- NaCl, KCl, Can be directly compressed.

Advantage of preparation of Granule:- Simple powder may not have desired flow property but after granulation, powder, material are improved by forming shape aggregate called granule \rightarrow Having good flow property & prevent segregation.

Part of tablet machine

- 1. Hopper:- For holding & Feeling granulation to be compressed.
- 2. Dies:- Define the size & shape of the tablet
- 3. Punches:- Used for compression of granulation with the die.
- 4. Cam track:- Guide the movement of the punches
- 5. Turrets:- Hold upper & lower punches
- 6. Feeling machine:- Used for moving granulation from the hopper to the die.
- 7. Die table Portion holding the dies.

Defect of Tablet

- 1. <u>Capping</u>:- Partial or complete separation of top or bottom crown of tablet
- 2. Lamination: Separation of tablet into two or more distinct layer.

Capping & Lamination problem are due to:-

- * Air Entrapment
- * Deep Concave Punches
- * Dry Granulation

Both problem corrected for:-

- * Pre Compression
- * Using flat punches, slowing tableting rate.
- * Add certain % of moisture by e.g. sorbitol, MC, PEG etc.
- 3. <u>Picking</u>:- Material adhere to punch faces Sticking:- Material adhere to the die wall, occur due to excessive moisture.

Both problem corrected for:-

- * Proper drying of granule
- * Plating of punch face by \rightarrow Chromium
- 4. Mottling:- Non-uniformity of color over the tablet is called mottling.
- 5. <u>WT variation</u>:- Occur due to poor flow, lack of glidant, lack of sufficient lubricant, bridging etc.
- 6. <u>Double impression</u>:- Due to uncontrolled movement of punch. Correct by using anti turning device.
- 7. <u>Hardness variation</u>:- Due to weight variation in granule filled in die. Corrected by using proper tooling machine.

Evaluation of tablet

- 1. <u>Size & shape</u>:-
 - * Crown thickness of tablet measured by micrometer.
 - * Total crown thickness is measured by vernier caliper.
 - * Tablet thickness should be controlled with $\pm 5\%$ of standard value.

- 2. Hardness of tablet:-
 - * It is force required to break the tablet in diametric compression test.
 - * Hardness of tablet affect dissolution behaviors (more hard the tablet, More time taken during dissolution).
 - * Hardness also called crushing strength.
 - * Standard hardness should be minimum 4 Kg.

Device used:-

- I. Monsanto tester:- Give Strength in 4 Kg.
- II. Strong cobb tester:- Force applied by hydraulic pressure & later air pressure.
- III. Pfizer tester:- Force applied by hydraulic pressure & latter air pressure.
- IV. Erwaka tester:- Gives strength in kg.
- <u>Friability</u>:- Friability is useful for determination of drug loss during transportation
 & its is determined by Roche friabilator.

- * Tablet fall from \rightarrow 6 inch distance
- * Speed \rightarrow 25 RPM
- * Time \rightarrow 4 min
- * Total Revolution \rightarrow 100
- * % Acceptance :- Not more than 1% (I.P)
- * 0.5 to 1% (USP)
- ¥

```
% Friability = \frac{Initial WT - Final WT}{Initial WT} \times 100
```

Whispering gives high friability value.

4. Uniformity of WT (Weight variation):-

- * Total tablets used for the test $\rightarrow 20$
- * 20 tablet selected randomly & calculate the average wt.

Average weight of tablet		Maximum % of
IP	USP	difference allowed
80 Mg or loss	130 Mg or less	± 10%
80-250 Mg	130-324 Mg	± 7.5%
More than 250 Mg	More than 324	± 5%

5. Uniformity of content:-

- * Total tablet taken 30
- * Total assayed at least 10 \rightarrow by analytical technique
- * Total passed if

L Nine of the tablet should contain 85-115% (or 100 \pm 15%) content & 10th tablet may contain 75-125% (or 100 \pm 25%) content.

* If above condition not satisfied than other 20 tablet should be assayed & no one should fall outside 85-115% or $100\pm$ 15% range.

6. Disintegration Test:-

* It is not applicable to modified release or mouth dissolving tablet.

Apparatus:- Tablet Disintegrator.

- * Tablet $\rightarrow 6$ (selected randomly)
- * Glass tube →6
- * Glass tube length $\rightarrow 3$ inch.
- * Mess screen \rightarrow 10 mesh \rightarrow 1.7 mm (USP)
- * 8 mesh \rightarrow 2mm (IP)
- * Upper & lower end closed with 10 mesh screen.
- * Beaker contain \rightarrow 900ml of water simulated gastric fluid or simulated intestinal fluid.
- * Temperature:- 37 ± 2%
- * Speed \rightarrow 28-32 RPM
- * Limit of Disintegration Test IP/USP

S.No	Tablet/Capsule	Liquid (Medium)	Disintegration
٦	Dispersible & Effervescent tablet	Water (19-21°C)	3 min
2	Uncoated tablet	Water	15 min (30 min USP)
3	Film coated	Water or 0.1 N HCl	30 min
4	Sugar coated	Water	60 min
5	Enteric coated tablet	0.1 N HCl with phosphate buffer	2 hr in gastric fluid media & 1 hr in intestine fluid media
6	Hard Gelation	Water	30 min
7	Soft Gelation	Water	60 min

7. <u>Dissolution Test</u>:- According to USP for solid dosage form (tablet & capsule) dissolution apparatus used are:-

S.No	USP Apparatus	Туре	Uses
1	Apparatus – I	Rotating Basket	Capsule, modified release solid dosage form
2	Apparatus – II	Paddle	Tablet, modified, release solid dosage form
3	Apparatus- III	Reciprocating	Determination of pH Profile of modified release dosage from.
4	Apparatus –IV	Flow through cell	Rapid degradation drugs
5	Apparatus –V	Paddle over disc	Transdermal patch, ointment, emulsion
6	Apparatus-VI	Rotating cylinder	Transdermal Patch
7	Apparatus –VII	Reciprocating disc	Transdermal patch.

Dissolution apparatus Comparison

- USP apparatus $I \rightarrow Basket$
- USP apparatus $\parallel \rightarrow$ Paddle
- IP & BP apparatus I \rightarrow Paddle
- IP & BP apparatus $\parallel \rightarrow$ Basket

Dissolution test Vs. Disintegration test

S. No.	Variable	Disintegration	Dissolution
1	Mesh screen of the bottom end of the basket	10	40
2	Temperature	37 ± 2°C	37 ± 0.5°C
3	Speed	28-32 RPM	50-70 RPM
4	Tablet remain below the surface of the liquid & descend not closer than	2.5 cm (25mm)	2.3-2.7 cm (23-27 mm)
5	Medium (pH 7.4)	900ml	900ml

Tablet coating

Type of coating :- 1. Sugar coating

- 2. Film coating
- 3. Enteric coating
- 4. Specialized coating
- 1. Sugar coating:-

Steps of sugar coating:-

Sealing J Sub coating J Smoothing (Syruping) J Color coating J Polishing J Printing Objective of coating -

- 1. To mask taste, odor, color of the drug.
- 2. To provide physical & chemical protection to the drug.
- 3. To control release of the drug from the tablet.
- 4. To protect drug from gastric environment e.g. enteric coated tablet.

abor NU A

- 5. To avoid chemical incompatibility.
- 6. To provide physical elegance.

1. Sugar coating:-

- - * Zein has also been used as another effective sealant which does not lengthen tablet disintegration & dissolution time.
- 2. <u>Sub coating</u>:- Sub coating is applied to round the edge & build up tablet size.

* Sugar coating can increase the weight by 50 to 100%.

- 3. <u>Smoothing (Syruping)</u>:- To cover & fill imperfection in the tablet surface caused by sub coating step. e.g:- simple syrup solution (Glossy syrup), corn starch.
- 4. <u>Color coating</u> :- to impart elegancy & uniform color.
- 5. <u>Polishing</u>:- provide desired lusture on the surface of tablet. e.g:- Beeswax, paraffin, carnauba wax.
- 6. printing :- By mean of a process of offset rotogravure.

2. <u>Film Coating</u>:- An ideal film coating material should have the following attributes:-

- * Solubility required for the intended use e.g. free water solubility or pH dependent solubility (enteric coating)
- * Capacity to produce an elegant looking product.

- * stability in the presence of heat, light, moisture, air & the substrate being coated. The film property should not change with age.
- * Essentially no color, taste or odor.
- * Compatibility with common coating solution additives.
- * Film coating (add 2 to 5 % to the tablet weight) done by three methods:-
 - 1. Pan pour method
 - 2. pan Spray method
 - 3. Fluidized bed press (Air suspension coating)

Material used in film coating

Non Enteric Material

- * HPMC (Hydrolyze, propyl methyl cellulose)
- * Ethyl cellulose
- * PVC (Polyvinyl pyrrolidone)
- * PEG (Poly ethylene glycol)

3. Enteric Coating:-

- * To resistance to gastric acid.
- * Ready susceptibility to or permeability to intestinal fluid. Enteric coating material (- phthalate)
- * HPMCP (HPMC phthalate)
- * Cellulose acetate phthalate
- * Polyvinyl acetate phthalate
- * Most common diluent used in tablet Lactose (Milk sugar)
- * Millard reaction (Drug having amino group, nitro group & metal show Millard reaction) with which diluent Lactose
- * Sta RX- 1500 is a trade name of Starch
- * Avicel MCC (Micro crystalline cellulose)
- * Aqua coat 30 % Ethyl cellulose in alcohol
- * Emcopress Calcium hydrogen phosphate
- * Ac-di-sol Internally cross linked form of sodium CMC.
- * Cerelose Dextrose
- * Cab-o-sil Colloidal silica \rightarrow Glident (used as polishing agent)
- * Diluent having disintegrating properties MCC
- * Most commonly used binder or tablet manufacturing Starch paste (10-20%)
- * Substance increase the flow properties of granular is called Glident
- * Most commonly used glident Talc (5%)