

1st - Grade

Mathematics

School Education

Rajasthan Public Service Commission

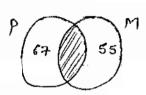
Paper – 2

Volume - 1

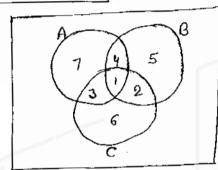
1st Grade

CONTENTS

Mathematics			
PART – I (Senior Secondary Level)			
1.	Sets, Relations and Functions:	1	
	Sets and their types		
	 Basic Properties of Sets 		
	• Relations		
	• Functions		
2.	Limit, Continuity and Differentiability:	66	
	• Limit		
	• Continuity		
	Differentiability		
3.	Complex and Vector Algebra:	107	
	Complex Numbers		
	Algebra of Complex Numbers		
	 Polar Representation of Complex Numbers 		
	 Square Roots of Complex Numbers 		
	 Vectors and Scalars 		
	Types of Vectors		
	Vector Algebra		
	 Scalar/dot product of two vectors 		
	 Vector/Cross product of two vectors 		
	Scalar Triple Products		
4.	Differential Calculus:	121	
	 Limits and algebra of limits 		
	• Derivatives		
	 Algebra of derivatives of functions 		
	 Derivatives of polynomial and trigonometric 		
	functions		

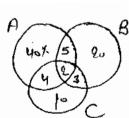

	 Derivatives of implicit and explicit functions 	
	 Second order derivatives 	
	 Increasing and Decreasing functions 	
	• Problems with solutions	
5.	Integral Calculus:	135
	Formulas of Integration	
	 Integration of Function by the method of 	
	substitution	
	Definite Integral	
	Some important integration	
6.	Differential Equation:	170
	Order of a differential equation	
	Degree of a differential equation	
	 Solution of differential equations of the first 	
	order and first degree	
7.	Permutations and Combinations:	182
	Fundamental Principle of Multiplication	
	• Permutation	
	Combination	
	Binomial Theorem for positive integers	
	General and middle terms in binomial expansion	
8.	Matrices:	192
	Types of Matrices	
	Operations on Matrices	
	Invertible Matrices	
9.	Two Dimensional Geometry:	212
	Straight-line	
	• Circle	
	Parabola	
	Ellipse and Hyperbola	
10.	Application of Derivatives and Integrals:	277
	Tangent and Normal	
	Maxima and Minima	
L	ı.	I

	Area under simple curves and area between simple Curves	
11.	Statistics:	295
	Mean, Mode, Median	
	 Measures of Dispersion (Range, Mean Deviation, 	
	Variance and Standard Deviation)	
	 Probability and their elementary laws 	
	Conditional probability	

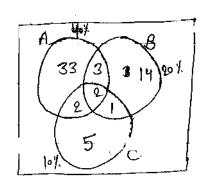


Sets, Relations and Functions

1.19



Universal Set =>


: n (AUBUC) = n (A) + n (B) + n (C) - n (AnB) - n (BnC) - n (And + n (AnBnc)

p.14]

only A समाधार पः वाल परिवारों व मं = 1000x

A:40 B:20

C: 10

PB: 5

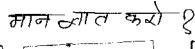
BC: 3

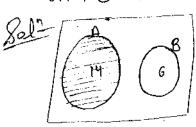
CA: 4

ABC: 2

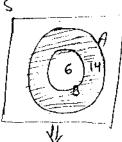
i) n (back अरव कार A पहले वार्ल परिवार) = 33 % [40-(3+2+2)] = 33 % /000 x 37

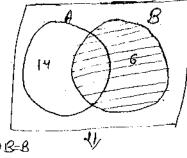
(i) n (8) 8 85 40 30 40 40 40 = 520 100 X51 10


iii) n (ठीक १ अखबार पहले वाल) = 60


(8/18 18+2+1= 6) 1000×6=6.

iv) n (कम में कम एक अखबार पड़ने वाली) = 600


(V) n (अरववार न पढ़ने नाल) = 1000-600 = 400


el then x a y के ज्यूनतम नीर आधिकतम

ANB = AV NCAUB) = N(A) + N(B) GAY BAT!

AUB=A TANB=B

२ वा उपायकतम मान =) A(A)=14 २ वा उपायकतम मान =) A(A)+n(B) = 14+6 ट्यापक रवप ४- => [14 ≤ 8 ≤ 20] $Max\{n(A) n(B)\} \leq n(AUB) \leq n(A) + n(B)$ जब ANB= o तब n(ANB)=0 ं भ छ न्यूनवम मान =0 & भू का अभिकतम मान = 6 ⇒ | 0 ≤ y ≤ 6 | ८मापक रवप र ⇒ 0 < n(AnB) < min {n(A). n(B)} Let given Set A & B &] $2^{m}-2^{n}=56$ Now by option => 26-23 = 56

समुन्यम (Sets)

समुच्चम > कर्नु भी के सुपरिभाषित संग्रह की समुच्चम करते हैं।

> मामुच्चम में क्षेत्रिस वस्तुए उसके सदस्य या तल करति है।

> मिर्ड व समुच्चम A का सदस्य है, ते इसे प्रतीकातम्ब रूप से a EA

लिखते हैं (a belongs to A) | यहि b समुच्चम A का सास्य नहीं है ते इसे b \$\diangle A \text{ लाखते हैं। (b not belongs to A).

मैंकेतन (Notation): अमुच्चयों की मुख्यतः भ्रोग्रेणी वर्णमाला के बेड़े असीं से मिक्पित किया आता है। असे - A, B, X आहि N- प्राकृत कीरायांकी का क्रमुच्चय Z- पूर्णाकी का क्रमुच्चय

z' - धन प्रविको का समुच्चम z - ऋष प्रविको का समुच्चम R - वास्तिक सैरामको का समुच्चम

८ → अम्मिम् सैरामाझी का समुख्यय
 ० परिमेष सैरामाझी का समुख्यप

Toppersnotes
Unleash the topper in you

मामुन्दयम् का निरूपन

L रीस्प् /सारणीवह

d. मिर्माल रूप

असभी अव्यवीं की Comma इए।

पृष्क करते हुए जिना पुनराष्ट्रीत है

र् के अन्स लिख्वेत है।

A = {1,3,5,7,9}

पर्ग 3 € A पन्स 4 \$ A

न इसमें भझते की लड़ "६ } "
के अन्दर अवचवी की सूचीबह करने के बाजाय उनके गुणधर्म (लखते हैं) N = {x: x एक प्राकृत सैरागा है } Z = {x: x एक प्रवादि है }

समुच्चम के प्रकार !

(1) एकल समुन्यय !- जिलमें अक्कि केवल एक अवयव है। जैसे- A = \$2 दे B = ई केदे ई0 दे , एक एकल समुन्यय है।

(2) रिक्त समुन्यमः वह समुन्यम् भिर्तमं एक भी अवगव नहीहा। इते के मा ६१ में प्रकीत करतेही भैमें १४: ४ ६ म , १८४८ १०१ = क र्थ: ४ ६ म , १८४८ १०१ = क

(3) परिमित व अपरिमित समुन्ज्यप: वह समुन्ज्यभ भिर्मित अवभवीं की भैरत्या नि हत्वर है। कि परिमित समुन्ज्यम क और नि हिन्दी नहीं है। ते। अपरिमित समुन्ज्यम कहलाताहै।

भेले- A = £a, e, i, o, u} → परिमिट-B = £1, a,3, ----} → अपरिमित

(4) अमान समुन्ययः यदि समुन्ययं A का प्रतिक अवयव समुन्ययं B में तथा समुन्ययं B का प्रतिक अवयव समुन्ययं A में ही हैं। व समान समुन्ययं कहत्विहै

377 A = & a, e, i, 0, 4} > A = B B = & e, i, 0, a, 4}

 $A = \xi P, q, r$ $B = \xi q, P, r$ $C = \xi r, q, P$ A = B = C

(5) उबसम्-ज्यमः श्री अमुन्यम B का प्रत्मेर अवस्य, समुन्य A का अपसमुन्यम अवस्य है, ते समुन्यम B, अन्य समुन्यम A का अपसमुन्यम कहलाता है। B = A देने अस्तिपत (क्या आता है)

भेतः A = £3,4,5,6? B = £3,4,5,6? B = £3,4,5?

अतः $B \subseteq A$, B, A का एक उपसमुन्ययं है।

(86) अस्मि उपसम् उपम् (Proper Subset) व अस्मिलमुन्यम् (Super set)

→ यहि A और B दें। तमुन्वम है तथा A C B एवं A 🕸 ता A, B का उचित अममुन्वम कहलाता है और B, A का अशिममुन्वम कहलाता है।

औते!- A = \$3,4,5} B = \$3,4,5,6}

A, B का अधिसमुन्यय है।

(भार सार्विष्यु समुन्यम् (Universal set): अव विचाराधीन स्तर्भी समुन्यम् किसी एक ही समुन्यम् के उपसमुन्यम् हाते है ते। उस अमुन्यम् का सार्विक समुन्यम् कहते हैं।

भैते: - योप्टि $A = \{1, 2, 4\}$ $B = \{2, 2, 4, 6\}$ $C = \{1, 2, 5, 6, 7\}$ $U = \{1, 2, 3, 4, 5, 6, 7\}$

यहां V नाकिक समुन्यम है जिसके A, B & C उपसमुन्यम है।

- (क)(8) द्यार समुच्यम !- किसी समुच्यम A के सभी उपसमुच्यम के कैंग्रह को A का बार समुच्यम कहते हैं। A के बार समुच्यम केंग्र
 - ने शांत समुन्यम् कली -भी रिक्ट नहीं होताहै। 245 A = 51,2,3 ती अपभुन्य P(A) की कैरतम $= 2^n$ 215 P(A) = 53,513,521,533,51,23,51,33,51,23

ममुन्वमी पर संक्रियाए :-

(1) मैं या मिमलन (Union)! समुन्यय A तवा समुन्वय B का सेव समुन्वय, वह समुन्वय है असमें A तवा B के सभी अवयवों की समितित यम से लेकर कमाया जाता है। यदि A = \$1,2,3,4,5,6} तथा B = \$3,5,7,9,11}

NOT AUB = 51,2,3,4,5,6,7,9,119

→ A Union B परिटे बसी

(2) समुन्ज्यमें का सर्वनिषढ (Intersection)! समुन्ज्यम A तवा ममुन्ज्यम B
का सर्वनिष्ढ समुन्ज्यम, वह समुन्ज्यम है जिसमें A तवा B के सभी
अभयनिष्ढ अवस्व उपस्थित है।

B = 5 4,6,9,12,15,18}

B = 5 4,6,8,10,12,14,16,18}

ANB = \$ 6,12,18} → इसे A intersection B पहते हैं।

(3) समुन्वयों का अहर ! समुन्वयम A का समुन्वयम B में के किन्दु , उन अवयवों का अमुन्वयम है और अमुन्वयम A में है किन्दु समुन्वयम A में है किन्दु समुन्वयम B में नहीं

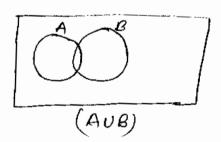
यिति A = ई१,2,3,4,5,6} B= ई१,4,6,8,10}

 $A - B = \{1, 3, 5\}$

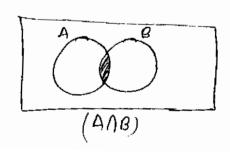
8-A = & B,10\$

o समु-व्यक्ती के ब्लीव्यमणितीय नियम !-

- (1) Idempotent Laws: किमी भी समुख्य समुन्यम A केलिए-
 - (i) A UA = A
 - (ii) A M A = A
- (2) Identity Laws! BAT AT ATTERED 4 & FAV.
 - in AUD=AUnleash the topper in you
 - (11) A N U =A
- (3) Commutative Law: किन्ही दी समुन्यमी A a B के लिए-
 - (i) AUB = BUA
 - (1) ANBZBNA
- (4) Associative Laws: 216 A, B & C तीन समुख्यम हैती-
 - (i) (AUB) UC = AU(BUC)
 - (ii) AN(BNC) = (ANB) NC



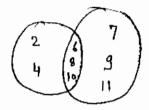
(6) De-Morgan's Law 知民 A & B 动气 计 如果正过 产品 (i) (AUB)' = A' N B' (ii) (A N B)' = A' U B'

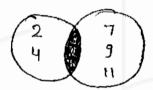

Venn औरख हु हारा समुच्छामें का प्रकीन! सार्विष्ठ समुच्यम की एक अहं भायत से दब्रिंग है तथा अन्य समुच्यमों की उस आयत के अन्य मुच्यमों में कीई अक्यव उभयनिए के समुच्यमों में कीई अक्यव उभयनिए हैं तो उस हारा प्रवर्शित ब्रह्मों की, प्रतिचेदी ब्रह्मों से दश्रितेही

उदा थिर । सार्विक समुच्चय के A तथा ह कोई में बसमुच्चय हैं, ते। वैन औरख हारा किल समुच्चय की प्रवर्शित कीलिए-(i) (AUB) (DA CEPA (A)B)

ह्लें: ii) (AUB)

(h) (A 1B)




3410 यित A = \$2,416,810} और B = \$6,7,8,9,10,113 हैं। ते AUB त्या
ANB क Verm औरव होंगे।

ह्मा,

(1) AUB = & 2,4,6,7,6,9,10,113

(11) ANB = \$6,8,103

Unleash the topper in you

R ज न्यूनरम मान =) N(A)=14 १९ न उम्बिकतम मान => N(A)+N(B) = 14+6 <u>ट्यापक रवप र्- => [14 < x < 20]</u> $| max \{ n(A) n(B) \} \leq n(AUB) \leq n(A) + n(B)$ ਯੂਰ ANB= φ ਰਵ n(ANB) = 0 ं भू छ न्यूनवम मान =0 & 1 का अधिकतम मान = 6 ⇒ [0≤ y≤6] ८मापढ रवप रे > $0 \le n(AnB) \le min \{n(A), n(B)\}$ P.11. Let given Set A & B &1 $2^{m}-2^{n}=56$ Now by option => 26-23 = 56

अम्बन्ध =) $\frac{1}{a^{1/2}} \frac{1}{A} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if then } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{1, 2, 3\} \text{ if } a^{1/2} = \{a, b, c\} \times B = \{a, b,$

is Re = {(9,1), 6,1), (6,1)}

 $\chi(iii)$ $R_3 = \chi(0.3), (2.6), (2.6)$ (iv) $R_4 = A \times B$ (v) $R_5 = \phi$

क्षान्वन्ध AXB, समुज्यम A रे 8 पर स्वाहिन स्ववध & \$ A से 8 पर रिक्त सम्बंध कटलाता है। &) यदि A = [a,b,c] म B = [1,2] ही then A मे B पर परिशाधित सम्बन्धों की सं = ? " n(AXB) = 3X2 = 6

: AXB का प्रत्मेक उपसम्भाम A से B में एक सम्बन्ध होता है। & 6 प्रवमनों नार्ल सम्मन्यम के उपसम्भामित सम्बंधों की सं 26 होती है। : A से B धर परिशामित सम्बंधों की सं 26 सम्पति 64 होती । & A से B में परिशामित सम्बंधों की सं. 26-1 प्राचीत 63 होगी।

Q! सम्बन्ध २: N→N में नियम ४९४८ ८+१४=10 द्वारा परिभाषित है। सम्बन्ध ९ को क्रमित सुम्मों के सम्मुच्य के रूप में क्रियो।

· <u>given</u> सम्बंहा-PRY (=> 2+12y=10

 $R=1 \text{ R} \rightarrow \mathcal{Y} = \frac{1}{2} \text{ EN}$ $R=2 \text{ R} \rightarrow \mathcal{Y} = \mathcal{Y} \in \mathcal{N}$ $R=3 \text{ R} \rightarrow \mathcal{Y} = \mathcal{Y} \notin \mathcal{N}$ $R=3 \text{ R} \rightarrow \mathcal{Y} = 3 \in \mathcal{N}$ $R=4 \text{ R} \rightarrow \mathcal{Y} = 3 \in \mathcal{N}$ $R=6 \text{ R} \rightarrow \mathcal{Y} = 2 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$ $R=8 \text{ R} \rightarrow \mathcal{Y} = 1 \in \mathcal{N}$

· R= L (8,4), (4,3), (62), (4,4)

सम्बन्ध के प्रान्त व परिसर =)

माद R, A & B में एक सम्बन्ध ही,

मात्र R, A & B में एक सम्बन्ध ही,

मात्र R, A & B में एक सम्बन्ध ही,

गें) R का परिसर = $\{b: (a,b) \in R\}$

Ex:- given HARORY - $R: M \to M$ of Total $H \in H \in H = 10$ $Yid = \{2, 4, 6, 8\}$ $TRUC = : R = \{(2,4), (4,3), (6,2), (8,1)\}$ $TRUC = \{4,3,2,1\}$

 $\begin{array}{lll} & \text{d.66} & \text{given} & R = \{ (2, 8) : R + 29 = 8 \} \in \mathbb{N} \\ & \text{d.66} & \text{d.66} & \text{d.66} & \text{d.66} \\ & \text$

क्तः स्रोत = (2,4,6) परिषर = (3,2,1)

पातिलोम सम्बंध =) मिद $R: A \rightarrow 8$ में एक सम्बंध ही तब उपका प्रतिलोम सम्बंध ही $R^{-1}: B \rightarrow A$ में निम्न प्रकार दिया जाता है- $R^{-1} = \mathcal{L}(b,a)$; $(a,b) \in R$ =) $[R^{-1}$ का प्रांत = R का परिसर