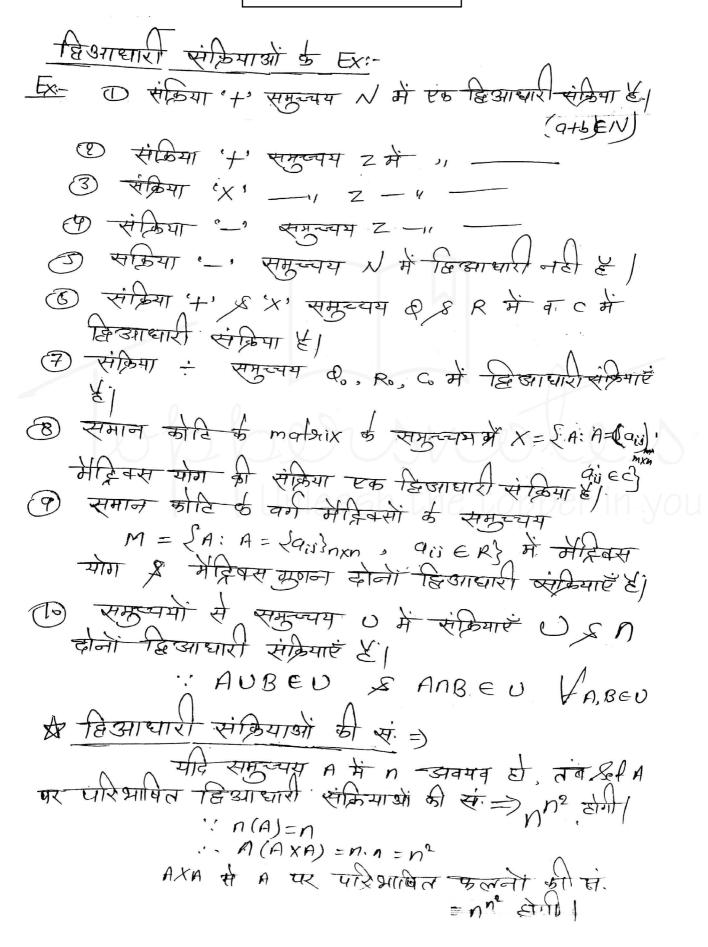


Rajasthan Public Service Commission

Volume - 2

1st Grade


CONTENTS

Mathematics Part II- Graduation Standard (Graduation Standard) 1. 1 **Group Theory** Group and their simple properties • Order of a group Order of an element • Permutation Group Cyclic Group • Subgroups and their basic algebric properties • Cosets and their properties 2. 31 Normal subgroups and Rings Normal Subgroups Homomorphism Rings Ideal • Quotient Groups • Group morphism 3. **Theory of Equation** 66 Relations between the roots and coefficients • Transformation of the equation Solutions of the cubic equation by Cardon's Method 4 86 Calculus • Partial Derivatives Asymptotes Maxima and Minima • Fundamental theorem of integral calculus • Double and triple integral

	Gamma Function	
	Beta Function	
	Curvature	
	Envelopes	
5.	Advanced Calculus	154
	 Mean Value's Theorem (Rolle's theorem, 	
	Lagrange's Theorem)	
	• Sequence and series with convergence properties	
6.	Complex Analysis	170
	 Continuity and differentiability of complex 	
	functions	
	Analytical Function	
	Cauchy-Riemman Equation	
	Harmonic Function	
	Conformal mapping	
7.	Ordinary and Partial Differential Equation	202
	 Linear differential equation of first order and 	
	higher degree	
	Clairaut's Form	
	 Lagrange's method 	
	Partial differential equation	
8.	Vector Calculus	253
	 Differential Operators (Gradient, divergence, 	
	curl)	
	Surface Integrals	
	Volume integrals	
	 Gauss Divergence theorem 	
	Stoke's Theorem	
	Green's Theorem	

Group Theory

Toppersnotes

Ex: 1) Set A = 2 9, b, c} पर परिषापित मुझ्यायारी संक्रियाओं की सं. = 39 होगी। संवत साख्यमें वत्समक प्रतिलीम कमीगीनमेम ग्रेपओएड लूम समीगुप V × \sim गृप कमरि्निमय् -झाबेली नाप समी राम के उदाः =) 1) (N,+) 8 (R, X) O (N,X) D C.t ⓓ (Z, +) ⑲ (之, x) (D (C,x)) the toppen nyou (U,U) (J) (Q, +) (D. (J. n) 6 (P,X) D R.H G7.9.0 up = 3710 => (生) (七, 七, 三) $\frac{(z, y)}{(z, z)} = \frac{(z, y)}{(z, z)} = \frac{(z, y)}{(z, z)} = \frac{(z, y)}{(z, z)} = \frac{(z, y)}{(z, y)} = \frac{(z$ ditHAB = "DEZ & ato= D= ato, Haez प्रतिलीम =): a ∈ Z : - a ∈ Z =) a+(-a)=o=(-a)+a

Toppersnotes

माबीनमेथ =) 9700 p E) ==) q+b=b+a , Va, bez -317: (z,+) एक आवेली group & $\begin{array}{c} \textcircled{(2)} & (2, +) \\ \end{array}$ 1 (m,+) here m, mxn stre & Hereni BT Set El vit साम्मेल संरत्माओं (d) (d,x)
(R,x) पर कीर्झापित है (X, ت) 🕀 $\frac{\sqrt{12}}{9} \frac{9204p}{G_{10}} = 0$ $G_{10} = (203, +)$ $G_{11} = (213, x)$ ⑦ G12 = ({1, −1} , x) ය ශ (1) $m_3 = \left(\xi_1, \omega, \omega^2 \right), X \right)$ (13) $G_{1_{4}} = \left(\xi_{1,-1}, i, -i \right)$ +ì-ĺ −ì i -(4) (J_5 = ((So,1,2,3,4))-7 ć (D) (T6 = ({1,2,3,4}, X5) 34 X_5 +50123 2 2 Ч -> Î 1 2 3 2 3 4 3 4 5 4 5 **\$** 4 5 1 ł 0 0 23 2 Ч 3 1 1 2 12 3 4 2 3 3 3 5 9

ጌ Toppersnotes Unleash the topper in you

 $\frac{d.97}{1}$ Set $G_7 = 2/aa/, a \neq 0, G \in \mathbb{R}$ मीद्रेक्स गुरान के लिए एक समूह ४। $for xistor entry lef e = \left(\frac{1}{2} \frac{1}{2}\right), A = \begin{bmatrix} q & q \\ q & q \end{bmatrix} e G$ her A. e = A = e.A & A E GT ... OT it Identity element =) [+ 1] & [fater file -Let group or & Identity element $E = \begin{bmatrix} e \\ e \\ e \\ e \end{bmatrix} \neq \begin{bmatrix} e \\ e \end{bmatrix}$ · · AE=A = la allee] = [a a] =) ae + ae = a = j 2ae = a $\therefore E = \begin{bmatrix} y_2 & y_2 \\ y_2 & y_2 \end{bmatrix} \quad Gr \neq \frac{1}{2} \begin{bmatrix} e = y_2 \\ e = y_2 \end{bmatrix}$ D. 106) Similarly given let GI= { Iz, A, B, c} 0.98) A का स्वतिलोम =) [-10] का स्वतित्माम $A^{-1} = \sum_{|A|} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}^T$ =) -1 [0-1] AT => /-1 0 Q.99) axb= atb+1 of datas sta. - [

Toppersnotes

q * (-1) = q + (-1) + 1 = q g = (-1) + (-1) + (-1) = q: a * (-1) = a = (-1) * a # a EZ Ind method let a vissur & Tore actions - 51949 et : a.e = q 5 ate+1=0 =) e+1=0 =) [e=-1] प्रापम n उनस्थालमक प्रांकें छा सम्च्यम संक्रिमा th के लिए एक अग्राम होता है। <u>Ex:</u> $(Z_2, +_2)$ $Z_2 = \{0, 1\}$ $(Z_3, +_3)$ $Z_3 = \{0, 1, 2\}$ (Z_{4}, t_{4}) $Z_{4} = \{0, 1, 2, 3\}$ ال المعالي (المعالي المعالي المعالي المعالي المعالي المحالي (المحالي المحالي محالي المحالي ال محالي محالي المحالي محالي محالي محالي محالي محالي محالي محالي محالي محالي मुनांकों का हिसे है। here p = अत्राज्य सं / संक्रिमा Xp क किए एक अग्वा हीता है। G7,= {1,2,3,4;Xs} $G_2 = \{1, 2, 3, 4, 5, 6, X_7\}$ A GROUP at the \Rightarrow Gro= $\xi_{1,0}$, $Gr_{q} = \xi_{1,\omega}, \omega_{1}^{*}, \chi_{2}^{*}$ $G_{\mathbf{0}} = \{1, -1, \mathbf{i} X\}$ $G_{12} = \sqrt{1}, -1, 1, -1, x$ Gin = { 0, 1, 2,3, 4; Xs} here $O((T_0) = 1)$ $O((T_1) = 2)$ $O((T_1) = 3$ $o(m_g) = 4$ $o(m_g) = 5$

oppersnotes

+5 0 1234 For here 0 0 1 2 3 4 1 1 2 3 4 0 2 2 3 4 0 1 3 3 4 0 1 2 4 4 0 1 2 3 प्रतिल्लीम -=0 -11 --11 3 -here- $\frac{1}{2} = \frac{1}{2} = \frac{1}$ q.18 { z6 + (mode)} # 2+64-1+63-1 51 मान = ? 26 = 20,1,2,3,4,5,6} $2+_{6}4^{-1}+_{7}3^{-1}$ =) $2+_{6}(2+_{6}3)$ =) 2+,5 == 16 the topper in you

Q.5-

Toppersnotes

: समो वम = 6 जा एक हल व - 6 हज ह/ =) $a_{1} = b_{2}$ - झण्पात- दोनों हल समान हो। $\frac{d^{2} \cdot 13}{e} = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}; a, b \in \mathbb{R}, a \neq 0 \end{bmatrix}$ रिर्म संयत नियम $A_1 = \begin{bmatrix} a_1 & b_1 \\ -b_1 & q_1 \end{bmatrix}, A_2 = \begin{bmatrix} a_2 & b_2 \\ -b_2 & q_2 \end{bmatrix} \quad q \neq 0, q_2 \neq 0$ Now $A, A_1 = \begin{bmatrix} +q_1 & b_1 \\ -b_1 & q_2 \end{bmatrix} \begin{bmatrix} q_2 & b_2 \\ -b_2 & q_2 \end{bmatrix}$ $= \begin{bmatrix} a_{1}a_{2} + b_{1}b_{2} & a_{1}b_{2} + b_{1}a_{2} \\ -b_{1}a_{2} - a_{1}b_{2} & -b_{1}b_{2} + a_{1}a_{2} \end{bmatrix}$ $= \begin{bmatrix} c & d \\ -d & c \end{bmatrix} \in G$ $T_2 = \int \int \int \partial \int \partial \partial f$ $A^{-1} = \frac{1}{a^2 + b^2} \begin{vmatrix} a & -b \\ -b & a \end{vmatrix} \in G_7$ Sid: I to group &/ Similarely by option D & CD = group D (G, .) 5 yers 31940 5- (AF a=e E) $a^2 = e \Rightarrow a \cdot a = e \Rightarrow a' = a$ let $a \in G$, $b \in G$ =) $a^{-1} = a = \chi b^{-1} = b$: a e (n, b e (n =) (a,b) e (n =) (0,6) = (0) :. (1) $= (a,b) = b(a^{-1} =) ab = ba$

Toppersnoles Unleash the topper in you

屳 Toppersnotes Unleash the topper in you

$$\begin{array}{l} (1)_{4} = \langle 0, 0, 3, 4, +_{5} \\ 0 \\ (0) = 0 \\ 0 \\ (1) = 1 + 1 + 1 + 1 + 1 = 0)^{5} = 6 \\ \therefore & 0(1) = 5 \\ 0(1) = 1 + 2 + 2 + 2 + 2 + 2 = 0)^{5} = 0 \\ \vdots & 0(2) = 5 \\ 0(3) = 0 \\ 3 + 3 + 3 + 3 + 3 = (3)^{5} = 0 \\ \vdots & 0(3) = 5 \\ 0(4) = 4 + 4 + 4 + 4 + 4 = (4)^{5} = 0 \\ \vdots & 0(3) = 5 \\ 0(4) = 4 + 4 + 4 + 4 + 4 + 4 = (4)^{5} = 0 \\ \vdots & 0(3) = 5 \\ 0(4) = 4 + 4 + 4 + 4 + 4 + 4 + 4 = (4)^{5} = 0 \\ \vdots & 0(4) = 5 \\ 0(5) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 1 \\ 0(6) = 2 \\ 0(6) = 1$$

Now let
$$a^{m} = e$$

High $m = nQ + 3e$
here $o \le 9 \le n$
(And $a^{m} = e$
 $\Rightarrow a^{nQ+3e} = e$
 $\Rightarrow e^{(2n)} \cdot a^{3e} = e$
 $\Rightarrow e^{2} \cdot a^{3n} = e$
 $\Rightarrow e^{2} \cdot a^{3n} = e$
 $\Rightarrow e^{2} \cdot a^{3n} = e$
 $\Rightarrow a^{3q} = e$ (here $o \le 9 \le n$)
 $\therefore m = nQ$
 $\Rightarrow m, n$ or group $(a = b = b = 1) + x = (a = e)$
(V) $e^{3} \cdot g^{3} \cdot g^{3} = 0$ ($e^{2n} + 1$)
 $\Rightarrow m, n$ or group $(a = b = b = 1) + x = (n = 1) + (n = 1) + x = (n = 1) + (n =$