

Mathematics

Senior Teacher

Rajasthan Public Service Commission

Paper-2

Volume - 1
(Secondary \& Senior Secondary Standard)

2nd Grade

CONTENTS

Mathematics		
(Secondary \& Senior Secondary Level) Volume - 1		
1.	Number System	1
2.	Geometry	19
	- Lines and their types	19
	- Angles and their types	20
	- Polygon and its types	24
	- Triangle and its types	25
	- Median of Triangle	28
	- Centers of the triangle	29
	- Congruency of Triangle	31
	- Similarity of Triangles	33
	- Properties of Triangles	37
	- Quadrilateral	38
	- Circle	42
3.	Mensuration	74
	- Triangle	74
	- Quadrilateral	76
	- Circle	80
	- Cuboid	82
	- Cube	83
	- Cylinder	83

	- Cone	84
	- Sphere	85
4.	Algebra	109
	- Polynomials	109
	- Quadratic Equation	109
	- Remainder Theorem	111
	- Factor Theorem	444
	- Algebra of complex numbers	137
	- Polar representation	140
	- Cube root of complex numbers	142
	- Arithmetic \& Geometric Progression	143
	- Permutation \& Combination	189
	- Binomial Theorem	195
5.	Matrices \& Determinants	199
	- Matrices and their types	199
	- Operations on Matrices	204
	- Determinants	216
	- Adjoint of a matrix	242
	- Inverse of a matrix	248
	- Solution of linear equation	259

Matrices \& Determinants
(1) परिभाषा:- पक्ति और स्तम्भो में किसी सुनिकित क्रम से व्यवखितित सख्याएँ जो आयताकर व्यूह मे लिखी हो मैट्रिक्स या अव्यूह कहलाती है।
उदा:-
(2) आव्यूह की कौटे:-
m पक्तियो (Rows) तथा n स्तम्भो (Column5) वाले किसी आव्यूह कोटि $m \times n$ कहलती है। अर्यात पक्तियो तथा स्तम्भो का गुणनफल $(m \times n)$ उस आव्यूह की कोटि कहलाती है।

$$
\left[\begin{array}{ccccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 j} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & a_{i 3} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]_{m \times n}
$$

यह एक $m \times n$ कोटि आयताकार आव्यूह है। आव्यूह को प्रदर्शीत करी लिए अदारो $A, B, C \cdots$ का प्रयोग करते है।

सक्षेप में उपूर्युक्त आकुह को लिखि सकते है.

$$
A=\left[a_{i j}\right]_{m \times n}
$$

जहाँ $i=1,2,3, \ldots \ldots m$
वर्या $j=1,2,3, \ldots \ldots n$
Example:.(1) यदि फिसी आवुह में 8 अवयव है तो इसकी संभव कोज्या क्या हो सकती है।
समंप कोटिया:- $m \times n$

$$
8=(1 \times 8),(8 \times 1),(4 \times 2),(2 \times 4)
$$

Example:- एक ऐसे 3×2 आव्यूह की इनाना करो जिसके अवयव $a_{i j}=\frac{1}{2}|i-3 j|$ दारा प्रदत्त है?
su एक 3×2 matrix $\quad A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

$$
\begin{array}{ll}
a_{1 j}=\frac{1}{2}|i-3 i|, & \begin{array}{l}
i=1,2,3 \\
j=1,2
\end{array} \\
a_{11}=\frac{1}{2}|1-3 \times 1|=1 & a_{12}=\frac{1}{2}|1-3 \times 2|=\frac{5}{2} \\
a_{21}=\frac{1}{2}|2-3 \times 1|=\frac{1}{2} & a_{22}=\frac{1}{2}|2-3 \times 2|=2 \\
a_{31}=\frac{1}{2}|3-3 \times|=0 & a_{32}=\frac{1}{2}|3-3 \times 2|=\frac{3}{2}
\end{array}
$$

अत: अभीष्ट आव्यूह $A=\left[\begin{array}{cc}1 & \frac{5}{2} \\ \frac{1}{2} & 2 \\ 0 & \frac{3}{2}\end{array}\right]_{3 \times 2}$
(3.) आव्यूहो के प्रकार:(Types of Matrics)
(A.) स्ताभ आव्यूह (Column Matrix):- वह आव्यूह निसमें केवल एक ही स्तम्भ हो स्तभ आव्यूह कहलाता है।
उदा:. $A=\left[\begin{array}{c}0 \\ -1 \\ 2\end{array}\right]$ एक 3×1 कोटि का स्तक्य आक्यह है व्यापक रूप $A=\left[a_{i j}\right]_{m \times 1}$
[B] पंक्ति आव्यूह (Row Matrix):- वह आव्यूह जिसमें केवल एक ही पांक्ति हो पाक्ति आव्यूह कहलाता है।

उदा: $-B=\left[\begin{array}{lll}-1 & 5 & 3\end{array}\right]$ एक 1×3 कोरि का पक्ति आव्यू है।
व्यापक रूप $B=\left[b_{i j}\right]_{1 \times n}$
(C) वर्ग ऑव्यूह (Square Matrix):- बह आव्यूह जिसमे पक्तियो एवे स्तभभो की सख्या समान हो वर्ग आव्यूह कहलाता है।
अत: $m \times n$ एक वर्ग आव्यू $ह$ कलाष्गा यदि $m=n$ हो
उदा:- $A=\left[\begin{array}{rr}1 & 3 \\ -4 & 7\end{array}\right] 2 \times 2$ कोटी का वर्गा आव्यूह
$B=\left[\begin{array}{ccc}2 & 0 & 1 \\ 3 & 3 & 4 \\ 6 & -3 & 5\end{array}\right] \quad 3 \times 3$ कोरिका वरी आत्यूह
व्यापक रूप $A=\left[a_{i j}\right]_{m \times m}$ एक m कोरि का बर्ग अव्यूह
Note:- यदि $A=\left[a_{i j}\right]$ एक n कोटि का वर्ग है तो अवयवो $a_{11} a_{22} a_{33} a_{44} \cdots a_{n n}$ को आव्यूह A के विकर्ण के अवयव कहते है।

$a_{11} a_{22} a_{33} a_{44} \cdots a_{n n}$ को आयूह का मुख्य विकर्ण कहते है। मुय्य विकर्ण के अवयवो के योग को आव्यूह का अनुरेख कहते है।

$$
a_{11}+a_{22}+a_{33}+\cdots+a_{n n}
$$

(D) विकर्ण आव्यूह (Diagonal Matrix):- वह वर्ग आव्यू जिसमे मुख्य विकर्ण अवयवो के अतिरिक्त शेष अवयव शुन्य हो, विकर्ण आव्यूह कहलाते है।
उदा:- $\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right]$ एक 3×3 कोटि का विकर्ण आसू ह है।
(E) अदिश आयूह (Scalar Matrix):- वह विकर्ण आस्यू जिसके विकर्ण के सभी अवयव समान हो, अदिश आव्यूह कहलाता है।
उदा:- $\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9\end{array}\right]$ एक 3×3 कोटि का अदिश आव्यू है।
(F.) तसमक आव्यूह (Identity Matrix):- वह विकर्ण आव्ट्ह जिसके विकर्ण के सभी अवयव एक (1) हो तल्समक आव्यूह कहलाता है।
उदा $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ एक 3×3 कोरी का त रुमक आलूट है। किसी n कोरि के तर्सम क आव्यूह को

In द्दारा प्रदर्शित करते है या केवल I
(G) शून्य आव्यूह (Zero Matrix):- $m \times n$ कोटि का ऐसा आव्यूह जिसका प्रत्येक अक्यव शुन्य (0) हो। उसे शून्य आव्यूह या रिक्त आत्यूह कहते है।

उदा:- $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]_{2 \times 2}\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]_{2 \times 4}$ सभी शुन्य आव्यूह है।
शुन्द आव्यूह को O (बड़े आकार का शून्य) से प्रदर्Rीत करते है।
[H] आव्यूही की समानता:-
दो आन्दूह $A=\left[a_{i j}\right]$ तथा $B=\left[b_{i j}\right]$ समान कहलाते है यदि
(i) वे समान कोटियो के हो तथा
(ii) A का प्रसेक अवयव, B के संगत अक्यव के समान हो अर्थता $i \bar{a} j$ के सभी मानो के लिए $a_{i j}=b_{i j}$ हो

$$
\begin{aligned}
& \text { उदाहरण:- }\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right] \text { तथा }\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right] \text { समान आव्यूह है } \\
& \text { किन्तु }\left[\begin{array}{ll}
3 & 2 \\
0 & 1
\end{array}\right] \text { तथा }\left[\begin{array}{ll}
2 & 3 \\
0 & 1
\end{array}\right] \text { समान आव्यू हन ही है। }
\end{aligned}
$$

आव्यू A तथा B समान होने पर $A=B$ लिखते है।

$$
\begin{aligned}
& \text { यदि }\left[\begin{array}{ll}
x & y \\
z & a \\
b & c
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
2 & \sqrt{6} \\
3 & 2
\end{array}\right] \\
& \begin{array}{ll}
x=-1 & y=0 \\
a=\sqrt{6} & b=3
\end{array} \quad c=2
\end{aligned}
$$

Example:- (1) यदि $\left[\begin{array}{cc}2 a+b & a-2 b \\ 5 c-d & 4 c+3 d\end{array}\right]=\left[\begin{array}{cc}4 & -3 \\ 11 & 24\end{array}\right]$ हो तो a, b, c तथा d का मान ज्ञात करो

हल!-

$$
\begin{array}{ll}
2 a+b=4 & 5 c-d=11 \\
a-2 b=-3 & 4 c+3 d=24
\end{array}
$$

समीकरणी को हल करने पर

$$
a=1 \quad b=2 \quad c=3 \quad d=4
$$

(4.) आव्यू हो पर सक्रियाए:-
(Operations on Matrices)
(A.) आव्यूहो का योग:- जब दो आव्यूह A एवं B एक हो कोरि के हो, तो a योग के लिए सुसंगत होते है तथा इनका योग $A+B$ से निकूपित करते है। योग को A तथा B के संगत अवयदो को जोडकर प्राप्त करते है।

$$
\begin{gathered}
A=\left[a_{i j}\right]_{m \times n} \text { तथा } B=\left[b_{i j}\right]_{m \times n} \\
A+B=\left[a_{i j}+b_{i j}\right]_{m \times n}
\end{gathered}
$$

उदाहरखण:-

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
\sqrt{3} & 1 & -1 \\
2 & 3 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & \sqrt{5} & 1 \\
-2 & 3 & \frac{1}{2}
\end{array}\right] \\
& \text { कि कीटिया समान है }
\end{aligned}
$$

$$
\begin{aligned}
& A+B=\left[\begin{array}{ccc}
\sqrt{3}+2 & 1+\sqrt{5} & -1+1 \\
2+(-2) & 3+3 & 0+\frac{1}{2}
\end{array}\right] \\
& A+B=\left[\begin{array}{ccc}
\sqrt{3}+2 & 1+\sqrt{5} & 0 \\
0 & 6 & \frac{1}{2}
\end{array}\right]
\end{aligned}
$$

\Rightarrow आव्यूहो के योग के मुणधर्म :-
(Properties of Matrix addition)
(i) क्रम-विनिमेय नियम :- यदि A व B दो समान कीरि के आय्यूह है तो

$$
\begin{gathered}
A+B=B+A \\
{[A+B]_{m \times n}=[B+A]_{m \times n}}
\end{gathered}
$$

(ii) साहचर्य नियम :- यदि A, B तथा C तीन समान कोटि के

$$
\begin{aligned}
& \text { आव्यूह है तो }(A+B)+C=A+(B+C) \\
& {[(A+B)+C]_{\text {mxn }}=[A+(B+C)]_{m \times n} }
\end{aligned}
$$

(iii) योज्य तस्समक:- एक $m \times n$ कोटि का शुन्य आव्यु $[0]$ को उसी कोटी के अन्य आय्यूह $[A]$ का तत्समक आव्यूह कहते है।

$$
A+O=O+A=A
$$

(iv.) योज्य प्रतिलोम:- आव्यूह $A=\left[a_{i j}\right]_{m \times n}$ के लिए $-A=\left[a_{i j}\right]_{m \times n}$ इस प्रकार हो कि

$$
A+(-A)=0=(-A)+A
$$

तहाँ O इसी कोटि का शून्य आव्यूह है। ताया
$-A$ आव्यूह A का थोज्य प्रतिलोम या प्रह्व आव्यूह है।
Note:- ऑव्वूह का प्रत्णी आवूहै:- किसी आवूह A का त्रहण आस्यू - A से निरुपित होता है। अर्यांू

$$
-A=(-1) A
$$

B. आव्यूहो का अन्तर:- जब दो आव्यूह A एव B एक ही कीजी के हो, तो वे व्यवकलन के तिए सुसंगत होत हैं तथा इनका अन्तर $A-B$ से निरुपित होता है। अन्तर को A तथा B के संगत अवयवो को घटाकर प्राप्त करते है।

$$
\begin{aligned}
A= & {\left[a_{i j}\right]_{m \times n} \text { तथा } B=\left[b_{i j}\right]_{m \times n} } \\
& A-B=\left[a_{i j}-b_{i j}\right]_{m \times n}
\end{aligned}
$$

$$
\text { उदादरण :- } A=\left[\begin{array}{ccc}
3 & 4 & -5 \\
3 & -2 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
0 & -3 & 7 \\
8 & -8 & -1
\end{array}\right]
$$

$$
A-B=\left[\begin{array}{lll}
3-0 & 4-(-3) & -5-7 \\
3-8 & -2-(-8) & 1-(-1)
\end{array}\right]
$$

$$
A-B=\left[\begin{array}{ccc}
3 & 7 & -12 \\
-5 & 6 & 2
\end{array}\right]
$$

(.. एक ऑव्यूह का एक अदिश से गुणन:यदि A कोई आव्यूह है तया K कोई अशून्य अदिश संख्या है तो आय्यूह A के प्रट्येक अवयव को K से गुणा कर प्राप्त आव्यूह A का K गुणा आव्यूह कहते है तथा इसे \& A से प्रदर्शीत करेग।

$$
\begin{aligned}
A & =\left[a_{i j}\right]_{m \times n} \\
K A & =\left[k a_{i j}\right]_{m \times n}
\end{aligned}
$$

उदाहरव:-

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
3 & 1 & 1.5 \\
\sqrt{5} & 7 & -3 \\
2 & 0 & 5
\end{array}\right] \text { तो } 3 A=\text { ? } \\
3 A & =3 \times\left[\begin{array}{ccc}
3 & 1 & 1.5 \\
\sqrt{5} & 7 & -3 \\
2 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
3 \times 3 & 3 \times 1 & 3 \times 1.5 \\
3 \times \sqrt{5} & 3 \times 7 & 3 \times(-3) \\
3 \times 2 & 3 \times 0 & 3 \times 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
9 & 3 & 4.5 \\
3 \sqrt{5} & 21 & -9 \\
6 & 0 & 15
\end{array}\right] \\
\text { 3दाहरण|:- } A & =\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
3 & -1 & 3 \\
-1 & 0 & 2
\end{array}\right] \text { तो } 2 A-B=? \\
2 A & =\left[\begin{array}{lll}
2 \times 1 & 2 \times 2 & 2 \times 3 \\
2 \times 2 & 2 \times 3 & 2 \times 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 4 & 6 \\
4 & 6 & 2
\end{array}\right] \\
2 A-B & =\left[\begin{array}{lll}
2 & 4 & 6 \\
4 & 6 & 2
\end{array}\right]-\left[\begin{array}{ccc}
3 & -1 & 3 \\
-1 & 0 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
2 A-B & =\left[\begin{array}{ccc}
2-3 & 4-(-1) & 6-3 \\
4-(-1) & 6-0 & 2-2
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & 5 & 3 \\
5 & 6 & 0
\end{array}\right]
\end{aligned}
$$

\Rightarrow एक आव्यूह के अदिश गुणन के गुणार्म:-
$A=\left[a_{i j}\right]$ तथा $B=\left[b_{i j}\right]$ समान कोटि $m \times n$ वाले दो आसूह है और K तथा l अदिश है तो
(i)

$$
\begin{aligned}
K(A+B) & =K\left(\left[a_{i j}\right]+\left[b_{i j}\right]\right) \\
& =K\left[a_{i j}+b_{i j}\right] \\
& =\left[\left[k a_{i j}\right]+\left[k b_{i j}\right]\right) \\
& =K\left[a_{i j}\right]+K\left[b_{i j}\right] \\
& =K A+K B \\
K(A+B) & =K A+K B
\end{aligned}
$$

(ii)

$$
\begin{aligned}
(K+l) A & =(K+l)\left[a_{i j}\right] \\
& =\left[(K+l) a_{i j}\right] \\
& =\left[K a_{i j}\right]+\left[l a_{i j}\right] \\
& =K\left[a_{i j}\right]+l\left[a_{i j}\right] \\
& =K A+l A \\
(K+l) A & =K A+l A
\end{aligned}
$$

उदाहरण1:-(1) यदि $A=\left[\begin{array}{cc}8 & 0 \\ 4 & -2 \\ 3 & 6\end{array}\right], B=\left[\begin{array}{cc}2 & -2 \\ 4 & 2 \\ -5 & 1\end{array}\right]$ तथा $2 A+3 X=5 B$ है

हल:- $\quad 2 A-3 x=5 B$ दोना दहोमे $2 A$ घटाने पर

$$
\begin{aligned}
& 2 A-3 X-2 A=5 B-2 A \\
& 2 A-2 A-3 X=5 B-2 A
\end{aligned}
$$

[-2A, आव्दूस $\angle A$ का योग द्रतिलोग हैं]

$$
\begin{aligned}
& 0-3 X=5 B-2 A \\
& x=\frac{1}{3}[5 B-2 A] \\
& x=\frac{1}{3}\left\{\left[\begin{array}{cc}
2 & -2 \\
4 & 2 \\
-5 & 1
\end{array}\right]-2\left[\begin{array}{cc}
8 & 0 \\
4 & -2 \\
3 & 6
\end{array}\right]\right\} \\
& x=\frac{1}{3}\left\{\left[\begin{array}{cc}
10 & -10 \\
20 & 10 \\
-25 & 5
\end{array}\right]-\left[\begin{array}{cc}
16 & 0 \\
8 & -4 \\
6 & 12
\end{array}\right]\right\} \\
& x=\frac{1}{3}\left[\begin{array}{cc}
10-16 & -10-0 \\
20-8 & 10-(-4) \\
-25-6 & 5-12
\end{array}\right] \\
& x=\frac{1}{3}\left[\begin{array}{cc}
-6 & -10 \\
12 & 14 \\
-31 & -7
\end{array}\right] \\
& x=\left[\begin{array}{cc}
-\frac{6}{3} & -10 / 3 \\
\frac{12}{3} & \frac{14}{3} \\
-31 / 3 & -7 / 3
\end{array}\right] \\
& x=\left[\begin{array}{cc}
-2 & -100 \\
4 & 14 / 3 \\
-\frac{31}{3} & -7 / 3
\end{array}\right]
\end{aligned}
$$

उदाहरण:-(2) x तथा y ज्ञात किजिए यदि

$$
x+y=\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right] \text { तथा } x-y=\left[\begin{array}{cc}
3 & 6 \\
0 & -1
\end{array}\right] \text { हो ? }
$$

हल:-i)

$$
\begin{aligned}
&(x+y)+(x-y)=\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]+\left[\begin{array}{cc}
3 & 6 \\
0 & -1
\end{array}\right] \\
&(x+x)+(y-y)=\left[\begin{array}{ll}
5+3 & 2+6 \\
0+0 & 9-1
\end{array}\right] . \\
& 2 x=\left[\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right] \\
& x=\frac{1}{2}\left[\begin{array}{ll}
8 & 8 \\
0 & 8
\end{array}\right]=\left[\begin{array}{ll}
4 & 4 \\
0 & 4
\end{array}\right]
\end{aligned}
$$

(ii)

$$
\begin{aligned}
(x+y)-(x-y) & =\left[\begin{array}{ll}
5 & 2 \\
0 & 9
\end{array}\right]-\left[\begin{array}{cc}
3 & 6 \\
0 & -1
\end{array}\right] \\
(x-x)+(y+y) & =\left[\begin{array}{cc}
5-3 & 2-6 \\
0-0 & 9-(-1)
\end{array}\right] \\
2 y & =\left[\begin{array}{ll}
2 & -4 \\
0 & 10
\end{array}\right] \\
y & =\frac{1}{2}\left[\begin{array}{cc}
2 & -4 \\
0 & 10
\end{array}\right] \\
y & =\left[\begin{array}{cc}
1 & -2 \\
0 & 5
\end{array}\right] .
\end{aligned}
$$

उदाहरण:-(3) x तथा y का मान ज्ञात करो यदि

$$
2\left[\begin{array}{cc}
x & 5 \\
7 & y-3
\end{array}\right]+\left[\begin{array}{cc}
3 & -4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
7 & 6 \\
15 & 14
\end{array}\right] \text { हो? }
$$

हल:-

$$
\begin{aligned}
2\left[\begin{array}{ll}
x & 5 \\
7 & y-3
\end{array}\right]+\left[\begin{array}{ll}
3 & -4 \\
1 & 2
\end{array}\right] & =\left[\begin{array}{cc}
7 & 6 \\
15 & 14
\end{array}\right] \\
{\left[\begin{array}{cc}
2 x & 5 x \\
14 & 2 y-6
\end{array}\right]+\left[\begin{array}{ll}
3 & -4 \\
1 & 2
\end{array}\right] } & =\left[\begin{array}{cc}
7 & 6 \\
15 & 14
\end{array}\right] \\
{\left[\begin{array}{ll}
2 x+3 & 5 x-4 \\
14+1 & 2 y-6+2
\end{array}\right] } & =\left[\begin{array}{cc}
7 & 6 \\
15 & 14
\end{array}\right] \\
{\left[\begin{array}{ll}
2 x+3 & 5 x-4 \\
15 & 2 y-4
\end{array}\right] } & =\left[\begin{array}{ll}
7 & 6 \\
15 & 14
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
2 x+3=7 \\
2 x=7-3 \\
2 x=4 . \\
x=\frac{4}{2} \\
x=2
\end{gathered}
$$

$$
\begin{aligned}
& 2 y-4=14 \\
& 2 y=14+4 \\
& 2 y=18 \\
& y=\frac{18}{2} \\
& y=9
\end{aligned}
$$

(D) आव्यूहो का गुणन:-
(Multiplication of Matices).
दो आव्यूहो A तथा B के लिए अनुकूलनीय गुणनफल है
जब A में स्तम्भों की संख्या, B में पक्तियो की संख्या के बराबर हो। अर्थत $A=\left[a_{i j}\right]_{m \times p}$

$$
B=\left[b_{i j}\right]_{p \times h}
$$

A व B का गुणनफल $[A \cdot B]_{m \times n}$ होगा।

उदाहरण:- (1) $\quad A=\left[\begin{array}{cc}2 & 5 \\ 8 & 10\end{array}\right] \quad B=\left[\begin{array}{cc}5 & 4 \\ 50 & 40\end{array}\right] \quad A \cdot B=$? A के स्तम्भ संख्या (2) $=B$ में पाक्तियाँ किसख्या (2)
हल:-

$$
\begin{aligned}
& A \cdot B=\left[\begin{array}{ll}
2 & 5 \\
8 & 10
\end{array}\right] \cdot\left[\begin{array}{ll}
5 & 4 \\
50 & 40
\end{array}\right]
\end{aligned}
$$

$C b_{1}$ स्तम्भ को $R_{a_{1}}$ पक्ति से गुणा करने पर a_{11} प्राप्त होगा C_{F} स्तम्भ को $R a_{2}$ दक्ति है गुणा करने पर a_{21} प्रापद होगा
$C b_{2}$ स्तम्कल को $R a_{1}$ प्रक्ति से गुणा करे पर a_{12} प्रापत होगा
Cl_{2} स्तन्भ को Ra_{2} पकि से गुणा करे पर a_{22} प्राप्त होगा

$$
\begin{aligned}
& A \cdot B=\left[\begin{array}{ll}
(5 \times 2)+(5 \times 50) & (4 \times 2)+(40 \times 5) \\
(5 \times 8)+(56 \times 10) & (4 \times 8)+(40 \times 10)
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{ll}
10+250 & 8+200 \\
40+500 & 32+400
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{ll}
260 & 208 \\
540 & 432
\end{array}\right] \\
& 3 \text { दाहरन:- (2) } A=\left[\begin{array}{ll}
6 & 9 \\
2 & 3
\end{array}\right]_{2 \times 2}^{\text {तथा } B=\left[\begin{array}{ll}
2 & 6 \\
7 & 9
\end{array}\right]_{2 \times 3}} \\
& A \text { के स्तम्भ }(2)=B \text { की पाक्तिदा } 2 \begin{array}{ll}
2
\end{array}
\end{aligned}
$$

हल:-

$$
\begin{aligned}
& A \cdot B=\left[\begin{array}{lll}
6 & 9
\end{array}\right] \rightarrow R_{1} \\
& {\left[\begin{array}{lll}
2 & 6 \\
7 & 9 & 1 \\
C_{1} \times R_{1} & C_{2} \times R_{1} & C_{3} \times R_{1} \\
C_{1} \times R_{2} & C_{2} \times R_{2} & C_{3} \times R_{2}
\end{array}\right]} \\
& A \cdot B=\left[\begin{array}{lll}
(2 \times 6)+(7 \times 9) & (6 \times 6)+(6 \times 9) & (0 \times 6)+(8 \times 9) \\
(2 \times 2)+(7 \times 3) & (9 \times 2)+(9 \times 3) & (0 \times 2)+(0 \times 3)
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{lll}
12+63 & 36+81 & 0+72 \\
4+21 & 12+27 & 0+24
\end{array}\right] \\
& A \cdot B=\left[\begin{array}{lll}
75 & 117 & 72 \\
25 & 39 & 24
\end{array}\right]
\end{aligned}
$$

विशेष:- (i) आयूहो के गुणन की अक्रम-विनेमयता:\rightarrow यदि $A \cdot B$ परिभाषित है तो यह आवश्यक नहीं है कि $B \cdot A$ भी परिभाषित हो
\rightarrow यदि $A \cdot B$ तथा $B \cdot A$ परिभाषित है तो यह आवर्यक नहीं है कि $A B=B A$ हो। अर्यात. $A B \neq B A$ हो रुकता है।
(ii) दो शुन्थेतर आव्यूहो के गुणनफल के रूपमें शुन्य आव्यूह:\rightarrow दो वास्तविक सख्याएँ a तया b के लिए यदि $a \cdot b=0$ है तो या $a=0$ था $b=0$ होता है।
\rightarrow परन्तु आव्यूह के लिए यह आनिवार्यतह सत्प नही है। उदाहरण :- $A=\left[\begin{array}{cc}0 & -1 \\ 0 & 2\end{array}\right] \quad B=\left[\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right]$

$$
A \cdot B=\left[\begin{array}{cc}
0 & -1 \\
0 & 2
\end{array}\right] \cdot\left[\begin{array}{ll}
3 & 5 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

अर्दात A या B आयूह शुन्य न होने पर थी $A \cdot B$ शून्य प्राप्त हुआ
\Rightarrow आव्यू हो के गुणन के गुणर्धर्म:-
(i) साहचर्य नियम:- यदि A, B तथा C आव्यू हो में आवश्यक गुणन $A \cdot B$ एव $B \cdot C$ के लिए अकूलनीय हो तो साहचर्द नियन का पाल्म होगा

$$
(A \cdot B) \cdot C=A \cdot(B \cdot C)
$$

(ii) बतंन नियम:- यदि A, B तथा आव्यूहो में आवश्यक गुणन एवं योग के अनकुलनिद हो तो, बंटन निरोम का पालन होगा।

$$
\begin{aligned}
& A \cdot(B+C)=A \cdot B+A \cdot C \\
& (A+B) \cdot C=A \cdot C+B \cdot C
\end{aligned}
$$

(iii.) गुणन के तस्मक का आस्तिव :- प्रद्येक वर्ग आव्यूह A के लिए समान कोटि के एक आव्यूह I का आस्तिथ होता है जो

$$
I A=A I=A
$$

उदाहर०):-(1) $A=\left[\begin{array}{ccc}0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0\end{array}\right] \quad B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0\end{array}\right] \quad C=\left[\begin{array}{c}2 \\ -2 \\ 3\end{array}\right]$
तो $A 6$ सत्वापित किजिए $(A+B) C=A C+B \cdot C$

$$
\begin{aligned}
A+B & =\left[\begin{array}{ccc}
0 & 6 & 7 \\
-6 & 0 & 8 \\
7 & -8 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 2 \\
1 & 2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 7 & 8 \\
-5 & 0 & 10 \\
8 & -6 & 0
\end{array}\right]
\end{aligned}
$$

