

2nd - Grade

Mathematics

Senior Teacher

Rajasthan Public Service Commission

Paper - 2

Volume - 1

(Secondary & Senior Secondary Standard)

2nd Grade

CONTENTS

Mathematics (Secondary & Senior Secondary Level) Volume - 1 1. **Number System** 1 2. Geometry 19 19 Lines and their types Angles and their types 20 Polygon and its types 24 • Triangle and its types 25 28 • Median of Triangle 29 Centers of the triangle • Congruency of Triangle 31 33 Similarity of Triangles • Properties of Triangles 37 38 Quadrilateral 42 Circle 3. 74 Mensuration 74 • Triangle 76 Quadrilateral 80 • Circle Cuboid 82 83 • Cube • Cylinder 83

	• Cone	84
	• Sphere	85
4.	Algebra	109
	Polynomials	109
	Quadratic Equation	109
	Remainder Theorem	111
	Factor Theorem	444
	Algebra of complex numbers	137
	Polar representation	140
	Cube root of complex numbers	142
	Arithmetic & Geometric Progression	143
	Permutation & Combination	189
	Binomial Theorem	195
5.	Matrices & Determinants	199
	Matrices and their types	199
	Operations on Matrices	204
	Determinants	216
	Adjoint of a matrix	242
	Inverse of a matrix	248
	Solution of linear equation	259

Matrices & Determinants

(1) परिभाषा:- पाक्त और स्तम्भी में किसी सुनिक्ति क्रम सं व्यवास्पित सञ्चाएँ भी आयताकार ट्यूह में लिखी ही में।ट्रेक्स या अव्यूह कहलाती है।

(शे आत्युह की कींटि:
m पार्वतयी (Rows) मधा भ स्तम्भी (columns) वाले

किसी आत्युह कीटि mxn कहलाती हैं।

अर्थात पार्वतयो तथा स्तम्भी का गुंगनपाल (mxn)

उस आत्युह की कीटि कहलाती हैं।

थर एक mxm कीटे आणताकार आव्यू ह है। आव्यू ह की प्रदर्शन करने किए अध्यो A, B, C · · · की प्रयोग करते हैं।

सहीप में उपर्श्वत आबुह की लिय सकते हैं

GET 1 = 1,2,3,....m

i= 1,2,3, ---- m

Example: Dura मिसी आब्द ह में 8 अंवयव हैं ती इसकी संअव की ाट्या क्या ही सकती हैं।

श्रमंब को टिया:- mxn $8 = (1 \times 8), (8 \times 1), (4 \times 2), (2 \times 4)$

Example: स्क रेमे 3x2 आर्य्ह की ननना करी जिसकी अवयव वांं = 11-31 स्मरा अवन्त है?

$$4\pi$$
 4π 3×2 Matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$

$$a_{ij} = \frac{1}{2} [i-3i], i = 1, 2, 3$$
 $j = 1, 2$

 $Q_{11} = \frac{1}{3} |1 - 3x| = 1 |000 |000 | = \frac{1}{3} |1 - 3x| = \frac{5}{3}$

921 = \frac{1}{3} |2-3x1| = \frac{1}{3} |2-3x2| = 2

 $Q_{31} = \frac{1}{3} |3-3x| = 0$ $Q_{32} = \frac{1}{3} |3-3x2| = \frac{3}{3}$

अतः अत्रीहट आयुर् A = 1 = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = = 1 = 1 = = 1 = = 1 = = 1 = 1 = = 1 = 1 = = 1

③ ऑब्यूही के प्रकार:-(Types of Matrics)

A रेतम आखूह (Glumm Matrix):- वह आयूह जिसमें केवल रक ही स्तम्य ही स्तम आखूह कहलाता है।

 $A = \begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix} \quad \text{van } 3 \times 1 \quad \text{affile and} \quad \text{where } \xi$ $c211491 \quad \text{ever} \quad A = [a_{ij}]_{m \times 1}$

ि पंक्ति आत्युह (Row Matrix):- वह आत्युह जिसमें केवल यक्त ही पांक्ति हो पाक्ति आत्युह कहिलाता है। उद्धा:-8:[-1 5 3] एक 1×3 कोरिका प्रक्ति आत्युह है। त्यापक रूप B = [bij]1×9

ि वंगी ऑक्ट्रेंट (Square Matrix): - अह आब्र्ट जिसमे पार्कत्यो खे स्तम्क्री की संख्या ममान ही वर्ग आव्यूट कहलाता है। मरः mxn रक वर्ग आब्र्हकरलाएगा यादी m=n हो

उदा:- A = [1 3] 2x2 कोरी का वर्ग आवर्ष

B = [2 0 1] 3x3 attleti att stage

ट्यापक रवप A = [aij] mxm रक्त mकोरि का वर्ग आव्यूह Note: - था के A = [aij] रक्त n कीरि का वर्ग हैं ती अवयवी au au au au au au am की आव्यूह A की विकर्ण के अवयव कहते हैं।

011 022 033 044 - ... 0mm की आयुर का मुख्य विकारी कहते हैं। मुख्य विकार के अलख्ते के योग की आयुर का अनुरेख कहते हैं। 011 + 022 + 033 + · · · + 0mm

णिकार्ग अल्युह (Diagonal Matrix): - वह वर्ग आयह पिकार्ग मुख्या विकार्ग अवयव की आतिरिका औष अवयव के ज्ञानिका के स्वाप्त हैं। उदा: - विकार्ग अवयव का का विकार्ग आयह है।

E) अदिश आर शूर (Scalar Morthix):- वह विकर्ण आयूर अप्रिके विकर्ण के समी अवयव समान हो, अदिश आयूर कराता है।

उदा:- [9 0 0] स्क 3 x 3 की टिका अदिश आबूह है।

ित्समक ऑखूह (I demtity Matrix):- वह विकर्ण आख्रा जिसके विकर्ण के सभी अवध्व एक (1) ही त्रांस मक आंखूह कहलाता है।

उदा ि 1 0 0 वि 3x 3 प्रतिका तत्मक अल्टि है।

किसी भक्तीर की लख्यम आखूह की In द्वारा अक्किन करते हैं या केवल I

जिन्य आखूह (Zero Matrix):- mxn की है का रेमा आखूह जिसका प्रतेक अवयव शुन्य (0) ही, उसे ब्राप्य आखूह या रिक्त आखूह कहते ही

उदा:- [00] 2x2 [0000] असी बुन्य आबूह है। 2) न्य आखूह को 0 (वड़े आंकार का शून्य) सं प्रवित्ति करते ही

मि आळा ही की समानता:-दी आब्यह A = [aii] तेषा B = [bii] भमान कहलाते हैं यह (1) वै समान कोटियों के ही तथा

(ii) A का प्रयेक अवयव, B के संगत अवयव के संमान हो अर्धात i ब ं के समी आनी के लिए aij = bij ही

उदाहरण:- 23 तथा 23 समान आस्टूह है

किल्यु ि । तथा 2 3 समान अख्यू ध्वाही है।

आखूर A लिया B समान होने पर A = B । लिखते ही

$$2\pi \frac{1}{4} \left[\begin{array}{c} x & y \\ z & q \\ b & c \end{array} \right] = \left[\begin{array}{c} -1 & 0 \\ 2 & \sqrt{6} \\ 3 & 2 \end{array} \right]$$

x=-1 y=0 Z=2 p=3 C=2 E/111 a = 56

Example: 1 216 [20+b 9-2b] = [4 -3] & di

a,b, c त्या d का भान जात करी

EMI- 2a+b=4 5C-d=11

a - 2b = -3 4 C + 3 d = 24

समीकारी। की हल करने पर

9=1 b=2 C=3 d=4

(4) आल्यही पर सिक्रियाएँ :-(Operations on Matrices)

A आध्युही का योग:- अब दी आबुह A खंब B हक ही कीरी के ही, तो वे योग के लिए प्रमात होते हैं तथा इनका शीग A+B से निर्मापत करते हैं। योग की A त्या B के संग्रंत अवपनी की जीडकर प्राप्त करते हैं।

A = [aij]mxn dul B = [bij]mxn

A+B=[aij+bij]mxn

$$A + B = \begin{bmatrix} J_3 + 2 & 1 + J_5 & -1 + 1 \\ 2 + (-2) & 3 + 3 & 0 + \frac{1}{2} \end{bmatrix}$$

$$A + B = \begin{bmatrix} J_3 + 2 & 1 + J_5 & 0 \\ 0 & 6 & \frac{1}{2} \end{bmatrix}$$

$$A + B = \begin{bmatrix} J_3 + 2 & 1 + J_5 & 0 \\ 0 & 6 & \frac{1}{2} \end{bmatrix}$$

⇒ आंख्ही के योग के म्लंधर्म :-(Properties of Matrix addition)

- (i) क्रम विनिमें नियम :- यदि A व B दी शमान कीरि के आखूह A+B=B+A[A+B] men = [B+A] men
- (ii) साहनर्य नियम: यदि A, B तथा C तीन समान की दि के 31124E & M (A+B)+C = A+(B+C) $[(A+B)+C]_{mx} = [A+(B+C)]_{mx}$

(iii) योत्य तलामक: - एक mxn की है का ब्रान्य आखूह (0) की उसी कोटी के अन्य आसूह [A] या तंसमक आसूह कहते हैं।

A+O=O+A=A

(iv) शेल्य प्रातिलीम: - आब्रह A = (aij] mxn के तिए - A=[aij]mrn इस प्रकार ही कि

A+(-A)=0=(-A)+A

पहाँ 0 असी कोटिया श्रीन्य आस्ट है। तापा -A आयु E A का मीत्य प्रतियोगया प्रस्त आयु ह है। Note: आर्ये हे जा अन्ता आर्येह :- विसी आर्येह प्रका भूटवा आर्येह - A की निरुपित होता है। अर्पात

-A = (-1) A

B. आधूही मा अन्तर:- टाब ही आयूह A ख B रम ही कीरि के ही, तो वे अवकलन के लिए पुरंगत होते हैं तथा इनका अनार A-B दे जिरुपित होता है। अन्तर की A त्या B के संगत अवयवी की धाटाकर त्राप्त करते हैं। A = [aij]mxn ful B=[bij]mn

$$A - B = \begin{bmatrix} 3-0 & 4-(-3) & -5-7 \\ 3-8 & -2-(-8) & 1-(-1) \end{bmatrix}$$

$$A-B = \begin{bmatrix} 3 & 7 & -12 \\ -5 & 6 & 2 \end{bmatrix}$$

ि रक्त आंखूह का रक्त अदिश से गुनन:-यदि A कोई आखूह है तथा K कोई अशूस अदिश संखाहें तो आखूह A के प्रमेक अवपात की K से गुना कर प्राप्त आखूह A का K गुना आंखूह कहते हैं तथा इसे कि A से प्रवासीत करी।

$$A = \begin{bmatrix} 3 & 1 & 1.5 \\ 55 & 7 & -3 \\ 2 & 0 & 5 \end{bmatrix} di 3A = 3$$

$$3A = 3 \times \begin{bmatrix} 3 & 1 & 1.5 \\ \sqrt{5} & 7 & -3 \\ 2 & 0 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 3x3 & 3x1 & 3x1 \cdot 5 \\ 3x5 & 3x7 & 3x(-3) \\ 3x2 & 3x0 & 3x5 \end{bmatrix}$$

$$3 = \begin{bmatrix} 3 & -1 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$

$$2A = \begin{bmatrix} 2x_1 & 2x_2 & 2x_3 \\ 2x_2 & 2x_3 & 2x_1 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \end{bmatrix}$$

$$A-B=\begin{bmatrix} 2 & 4 & 6 \\ 4 & 6 & 2 \end{bmatrix} - \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$

$$2A - B = \begin{bmatrix} 2-3 & 4-(-1) & 6-3 \\ 4-(-1) & 6-0 & 2-2 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 5 & 3 \\ 5 & 6 & 0 \end{bmatrix}$$

अस्ट हे और एतया ! अद्भा हे ती

= K[aij] + K[bij]

= KA +KB

= [(K+1)aij]

= [Kaij] + [laij]

= K[aij] + [[aij]

= KA + JA

हत:-
$$2A - 3X = 5B$$
 तीना पक्षी में $2A$ ब्रिटाने पर
 $2A - 3X - 2A = 5B - 2A$
 $2A - 2A - 3X = 5B - 2A$
 $-2A$, आखूर्भ का योग प्रतिलों में

$$0 - 3x = 5B - 2A$$

$$x = \frac{1}{3} \left[5B - 2A \right]$$

$$x = \frac{1}{3} \left[5B - 2A \right]$$

$$x = \frac{1}{3} \left\{ 5 \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix} - 2 \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix} \right\}$$

$$x = \frac{1}{3} \left\{ \begin{bmatrix} 16 & -16 \\ 26 & 10 \\ 28 & 5 \end{bmatrix} - \begin{bmatrix} 16 & 0 \\ 8 & -44 \\ 6 & 12 \end{bmatrix} \right\}$$

$$\chi = \frac{1}{3} \begin{bmatrix} 10-16 & -10-0 \\ 20-8 & 10-(-4) \\ -25-6 & 5-12 \end{bmatrix}$$

$$\mathcal{X} = \frac{1}{3} \begin{bmatrix} -6 & -10 \\ 12 & 14 \\ -31 & -7 \end{bmatrix}$$

$$DC = \begin{bmatrix} -\frac{6}{3} & -\frac{10}{3} \\ \frac{12}{3} & \frac{14}{3} \\ -3\frac{1}{3} & -\frac{7}{3} \end{bmatrix}$$

$$\mathcal{SC} = \begin{bmatrix} -2 & -19_3 \\ 4 & 19_3 \\ -31_3 & -7_3 \end{bmatrix}$$

$$x+y=\begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}$$
 $\sqrt{241}$, $x-\lambda=\begin{bmatrix} 3 & 9 \\ 0 & -1 \end{bmatrix}$ $\frac{5}{54}$ $\frac{5}{5}$

$$\mathcal{E}_{G}$$
: \mathcal{E}_{G} : \mathcal{E}

$$2 \times = \begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix}$$

$$X = \frac{1}{2} \begin{bmatrix} 8 & 8 \\ 0 & 8 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 0 & 4 \end{bmatrix}$$

(ii)
$$(X+Y)-(X-Y)=\begin{bmatrix} 5 & 2 \\ 0 & 9 \end{bmatrix}-\begin{bmatrix} 3 & 6 \\ 6 & -1 \end{bmatrix}$$

$$(X-X)+(Y+Y)=\begin{bmatrix} 5-3 & 2-6 \\ 0-6 & 9-(-1) \end{bmatrix}$$

$$2\gamma = \begin{bmatrix} 0 & 10 \end{bmatrix}$$

$$Y = \begin{bmatrix} 1 & -2 \\ 0 & 5 \end{bmatrix}$$

$$3516201.-3) \times 110 \times 11$$

24-4=14

$$x = \frac{4}{2}$$

ण आयही का गूणन:-(Multiplication of Matices). दी आव्यूही A त्या B की लिए अनुकूलनीय ाव A में स्तम्भों की सर्खा, B में पक्तियों की संख्या के बराबर ही। अवित A = [aij] mxp B = [bij] pxn

हलः-

$$A \cdot B = \begin{bmatrix} 2 & 5 \\ 8 & 10 \end{bmatrix} \cdot \begin{bmatrix} 5 & 4 \\ 50 & 40 \end{bmatrix}$$

$$\begin{bmatrix}
2 & 5 \\
8 & 10
\end{bmatrix} \rightarrow Ra_{2}$$

$$\begin{bmatrix}
5 & 4 \\
50 & 40
\end{bmatrix} \rightarrow Rb_{2}$$

$$Ca_{1} & Ca_{2}$$

$$Cb_{1} & Cb_{2}$$

Сь, स्तम्म को Ra, पार्क्त से गुणा करने पर ता, प्राप्त होगा Сь, स्तम्म को Ra, पार्क्त से गुणा करने पर त्रा, प्राप्त होगा Сь, स्तम्म को Ra, प्राक्त से गुणा करने पर ता, प्राप्त होगा Сь, स्तम्म को Ra, प्राक्त से गुणा करने पर त्रा, प्राप्त होगा

$$A \cdot B = \begin{bmatrix} (5x2) + (5x50) & (4x2) + (40x5) \\ (5x8) + (56x10) & (4x8) + (40x10) \end{bmatrix}$$

$$3 = \begin{bmatrix} 6 & 9 \\ 2 & 3 \end{bmatrix}_{2 \times 2} = \begin{bmatrix} 2 & 6 & 0 \\ 7 & 9 & 8 \end{bmatrix}_{2 \times 3}$$

$$A = \begin{bmatrix} 6 & 9 \\ 2 & 3 \end{bmatrix}_{2 \times 2} = \begin{bmatrix} 2 & 6 & 0 \\ 7 & 9 & 8 \end{bmatrix}_{2 \times 3}$$

ECT:- A·B =
$$\begin{bmatrix} 6 & 9 \\ \hline{2} & 3 \end{bmatrix}$$
 $\Rightarrow R_1$ $\begin{bmatrix} 2 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 8 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 7 \end{bmatrix}$ $\begin{bmatrix} 6 \\ 7 \end{bmatrix}$ $\begin{bmatrix} 7 \end{bmatrix}$

विशेष:-(i) आसूही के गुजन की अनुम - विनेमयता:
-> यदि A.B परिकारित हैं तो यह आवश्यक महीं हैं कि

B.A. भी परिकारित है

े थार A·13 तथा B·A परिज्ञाचित हे तो यह आवक्यक जहीं हैं कि AB = BA ही | अर्थातः AB ≠ BA र्ध्यक्ताही

(ii) दी शुन्पेतर आंग्रही के गुंगनमाल के रूपमें शुन्य आंग्रह:-ने दी वास्तिक अक्वारें वत्या b के लिए धीर a.b=o है ते या a=o या b=o होता है।

उपरमा आय् के लिए यह अनिवार्थतह सत्य नहीं हैं। उदाहरण:- A = [0 -1] B = [3 5]

$$A \cdot B = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 6 \end{bmatrix}$$

अर्थात Аया В आंबूह शुन्य न होने पर भी А. В शून्य प्राप्त दुआ

अाधु ही के गुनन के गुनधर्म:-

(i) साहत्यर्थ नियम: - थादे A, B त्या C आब्द्र में आवश्यक गुनन A. B स्व B. C के लिए अनुकूतनीय ही ती साहत्यकी नियम का पालन होगा

(A.B).C = A. (B.C)

(गं) विटेन नियम: यादे A, Bत्या (भागू हो में अवश्यम गुजन रवं भोग के अनुसमिति हो तो, बटन

 $A \cdot (B + C) = A \cdot B + A \cdot C$ $(A + B) \cdot C = A \cdot C + B \cdot C$

(11i) गुंगों की तत्समक का आस्तिव: प्रसेक वर्ग आसूर A की लिए समान की रिके एक आयूर I का आसी व होता ह औ IA=AI=A

$$3\overline{G1E(0)}:= 0 \quad 6 \quad 7 \\ -6 \quad 0 \quad 8 \\ 7 \quad -8 \quad 0$$

$$B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix} \quad C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$$

भी AG अत्यापित कि जिए (A+B)C = AC + B.C

$$A + B = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 7 & 8 \\ -5 & 0 & 10 \\ 8 & -6 & 0 \end{bmatrix}$$