

2nd - Grade

Mathematics

Senior Teacher

Rajasthan Public Service Commission

Paper - 2

Volume - 2

(Secondary & Senior Secondary Standard)

2nd Grade

CONTENTS

Mathematics

	(Secondary & Senior Secondary Level)	
	Volume - 2	
1.	Sets, Relations and Functions	1
	Sets and their types	1
	Operations of sets	8
	Laws of sets	9
	De-morgan's law	10
	Venn diagram	10
	Relation	12
	• Function	22
	Special Function	66
2.	Trigonometry	94
	Trigonometric ratio of angles	94
	Measuring angles in degree and radian	95
	Trigonometric Function with minimum and	97
	maximum value	
	Trigonometric formulas	97
	Trigonometric Equation	116
	Inverse trigonometric function	123
	Height and Distance	135

3.	Analytical Geometry	144
	(i) Two Dimensional Geometry	147
	Distance formula	147
	Section formula	147
	Types of Centers in Triangle	152
	Straight line	162
	• Circle	214
	Parabola	233
	• Ellipse	259

Analytical Geometry

$$\star$$
 $\phi = \frac{4}{4} \sin^{3} \left(\frac{1}{2} \right)$

$$II^{nd}$$
 $X < 0, y > 0$
 $O = \pi - \phi$
 $I = \phi$

Exa- निम्न बिन्दुओं की झुबीय रूप में बदलों -
$$A(1,-1)$$
, $B(-1,-1)$, $C(-1,1)$, $D(-1,-1)$, $E(1,-1)$, $F(1,-1,-1)$ $\gamma = \sqrt{1^2+1^2} = \sqrt{2}$

5017-

$$(1,1) \equiv (\sqrt{2}, \frac{\pi}{4})$$

$$(-1,1) \equiv (\sqrt{2}, \frac{3\pi}{4})$$

$$(-1,-1)=(52,-31)$$

$$(1,-1) \equiv \left(\sqrt{2}, -\frac{\pi}{4}\right)$$

$$D(-1,-1), E(1),$$

$$\gamma = \sqrt{1^{2}+1^{2}} = \sqrt{2}$$

$$\phi = \tan^{-1}\left|\frac{\pm 1}{\pm 1}\right| = \tan^{-1}\left|=\frac{\pi}{4}\right|$$

$$(-1,1)$$

$$(1,1) = (\sqrt{2}, \frac{\pi}{4})$$

$$(1,-1)$$

$$(1,-1)$$

$$(1,-1)$$

$$(1,-1)$$

$$(1,-1)$$

$$(1,-1)$$

(52,-II)

$$(-1,\sqrt{3}) \equiv (2,\frac{2\pi}{3})$$

$$(-1, -\sqrt{3}) = (2, -\frac{71}{3})$$

$$(1, -\sqrt{3}) \equiv (2, -\frac{2\pi}{3})$$

$$\left(-\sqrt{3},-1\right)\equiv\left(2,-\frac{5\pi}{6}\right)$$

$$(-3,4) \equiv (5,\pi - 49\pi^{1}\frac{4}{3})$$

 $(-3,-4) \equiv (5,-\pi + 49\pi^{1}\frac{4}{3})$
 $(3,-4) \equiv (5,-49\pi^{1}\frac{4}{3})$
 $(-6,7) \equiv (\sqrt{85},\pi - 49\pi^{1}\frac{7}{6})$

$$\begin{array}{lll}
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{25}, \pi - 4\alpha n^{1} \frac{7}{6}) \\
\text{Then } & (\sqrt{2$$

Two Dimensional Geometry

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

$$\frac{1}{\sqrt{3}} \Rightarrow PP = \sqrt{(x_1 - x_2)^2 + (y_$$

=) समकोठा ८ का परिकेन्द्र फर्ज का मध्य बिंदू खेला ध्र =) समकोठा ८ का लक्काकेंद्र उसी ८ का वह सीघे खेता ध्र जिस पर समकोठा ४।

$$\Rightarrow \frac{b}{\sqrt{a}}$$

समांतर चतुर्ध्य

<u> </u>	3
) x	1 3
C080	Sine
-Sino	C080
	C080

$$\left[AB^2 + Ac^2 = 2\left(AD^2 + Dc^2\right)\right]$$

Then are
$$91/50 = (41-42)^2 + (41-45)^2$$

Then (antita of the entry)

Then (antita of the entry)

$$x_{2}, x_{3}$$

Then (antita of the entry)

 x_{2}, x_{3}
 x_{4}, x_{5}
 x_{1}, x_{2}
 x_{2}, x_{3}
 x_{2}, x_{3}
 x_{3}, x_{4}
 x_{2}, x_{3}
 x_{4}, x_{5}
 x_{5}, x

 $\frac{x_2 - x_1}{q} = \frac{y_e - y_1}{b} = -\frac{2(ax_1 + by_1 + b_0)}{q^2 + b^2}$

) रेखाओं |ax|+ |by| + c = 0 से बनने वाले प्रमुख का \$ = 8c2 If and & 31 color a = b & Then 150 = 20) यहि वस् + b 8hry + by = 0 द्वारा व्यक्त रेखाएँ J=mix 8 J=m2x & da =) $[m_1 + m_2 = -\frac{2h}{b}]$ & $[m_1 m_2 = \frac{q}{b}]$) 300 A EU DOI 8 ET at Jano = 251-ab otb > Pe के समाप्तिभाजक के point => $R \left(\frac{2R_2 + 2R_1}{1 + 2}, \frac{92 + 291}{1 + 2} \right)$ $S\left(\frac{2x_2+x_2}{9+1}\right)$ h the topper in you

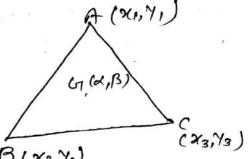
🗙 त्रिभुणी भी केन्द्री है प्रकार :-

(1) केन्द्रक (4)—

किसी ८ की माहिएक। औं का

प्रितिच्छेद बिन्दु केन्द्रक (4) कहलाता

 $B_{(x_{2},y_{2})}$ $A_{(x_{1},y_{1})}$ $A_{(x_{2},y_{2})}$ $A_{(x_{2},y_{2})}$ $A_{(x_{3},y_{3})}$ $A_{(x_{3},y_{3})}$


माहिशका- क्रीर्व की गुणरने वाली वह देखा भी इकारे सामने वाली भुष्मा की समिक्षित करती है

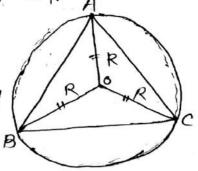
$$G_1\left(\frac{2 \cdot x_2 + x_3}{2} + 1 \cdot x, \frac{2 \cdot y_2 + y_3}{2} + 1 \cdot y_1\right)$$

$$G_1\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$$

- किसी ८ डे दी अधि (x1, Y1) व (x2, Y2) तथा डेन्ड़ ((4, B)) ही ती तीसरां अधि जात करना -

C(x3 = 3x-x1,-x2, y3=3B-y-y2) B(x2, y2)

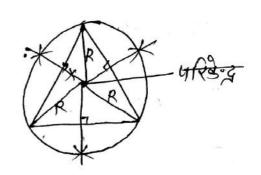
पार्त १०१८ का केन्द्र (2,7) है व इसीड की शिषि (4,8) व (-2,6) है तो शिशुष्म का तीसरा शीर्ष होगा ~


$$\frac{5017}{3x7-8-6} = \frac{3x2-49-(-2)=23}{3x7-8-6}$$

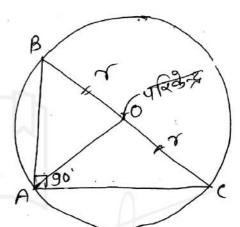
$$G_1(x_3 = 6-4+2=4)$$

 $y_3 = 21-14=7$

Gi (4,7) Angleash the topper in you


(2) ares-3 [CircumCentre]:-

किसी D है परिशत दत का केन्द्र परिकेन्द्र ०/८ कहलाता है।



किसी य ही युषाओं है लम्ब शमिड माजकी . छ। प्रतिरहेद है।

🗴 ्नमकींग 🛆 में परिकेन्द्र व्यदिव कर्ण का महय बिन्दु होता है।

A (1,2).

5012 रार्खन्द्र ०(४,५)

OA = 0B = 00

 $\int (x-1)^2 + (y-2)^2 = \int x^2 + (y+3)^2 \quad (0,-3)$ $= \int [(x+2)^2 + (y-1)^2$

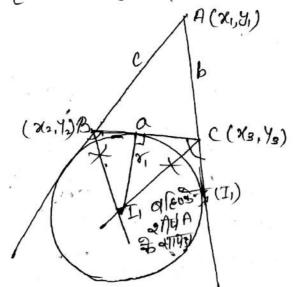
=> x+y-2x-4y+5 = x+y+6y+9 = x+42+4x-94 O & O & -

ित्र सी Δ के अन्तः की की के की का प्रतिरहोद्ध किन्द के किन्द्र किन्

$$Q = BC, b = CA, C = AB$$

$$T = \frac{aA + bB + c^{C}}{a + b + c}$$

$$I\left(x = \frac{ax_1 + bx_2 + cx_3}{a + b + c}, \quad y = \frac{ay_1 + by_2 + cy_3}{a + b + c}\right)$$


हx- xy=0 तथा 3x+4y=12 डा सी निर्मित △ का इन्तः के-इ होगा ?

So/1-

$$\begin{array}{c} (x_{2}, y_{2}) \\ B(0,3) \\ 5=c \\ b=4 \\ (x_{1}, y_{1}) \\ b=4 \\ (0,0) \\ 3x+4y=12 \end{array}$$

$$I\left(\frac{10}{12}, \frac{12}{12}\right) \Rightarrow I\left(\frac{9}{11}\right) \frac{\beta_{12}}{\beta_{12}}$$

[4] aferang [[x-Centre] (I1/I2/I3) -

(I)
$$\vec{H}$$
 $a \rightarrow -a$ every $a \rightarrow a$ $a \rightarrow b$ every $a \rightarrow a$ $a \rightarrow b$ every $a \rightarrow a$ $a \rightarrow a$ $a \rightarrow b$ $a \rightarrow a$ $a \rightarrow a$

$$I\left(\frac{-ax_1+bx_2+cx_3}{-a+b+c}, \frac{-ay_1+by_2+cy_3}{-a+b+c}\right)$$

$$T_2\left(\frac{\alpha x_1-b x_2+c x_3}{a-b+c}, \frac{a y_1-b y_2+c y_3}{a-b+c}\right)$$

$$T_3\left(\frac{ax_1+bx_2-cx_3}{a+b-c}, \frac{ay_1+by_2-cy_3}{a+b-c}\right)$$

Exa- DAB(+ A(4,0), B(0,3), C(4,3) a) a) e) e) e) = ?

$$\frac{Sol^{2}}{I_{1}\left(-4 \times 4 + 3 \times 0 + 5 \times 4, \frac{(x_{1}, y_{2})}{-4 + 3 + 5}, \frac{(x_{2}, y_{3})}{(03)B}\right)} = \frac{4}{3 + 5}$$

$$\frac{-4 \times 0 + 3 \times 3 + 5 \times 3}{-4 + 3 + 5}$$

$$\frac{-4 \times 0 + 3 \times 3 + 5 \times 3}{-4 + 3 + 5}$$

$$\frac{3}{4}$$

$$\frac{4}{4}$$

$$\frac{4}{4}$$

$$I_1\left(\frac{-16+20}{4}, \frac{9+15}{4}\right)$$

$$I_{1}(1,6)$$

$$I_{2}\left(\frac{4x4-3x6+5x4}{4-3+5}, \frac{4x0-3x3+5x3}{4-3+5}\right)$$

$$T_2\left(\frac{16+20}{6}, \frac{-9+15}{6}\right)$$
 $T_2\left(6,1\right)$

$$T_{3} \left(\frac{4.4 + 3.0 - 5.4}{4+3-5}, \frac{4.0 + 3.3 - 5.3}{4+3-5} \right)$$

$$T_{3} \left(\frac{16-20}{2}, \frac{9-15}{2} \right)$$

$$T_{3} \left(-\frac{4}{2}, \frac{-6}{2} \right)$$

$$\Rightarrow T_{3} \left(-\frac{4}{2}, \frac{-6}{2} \right)$$

$$\Rightarrow T_{4} \left(-\frac{4}$$