

Rajasthan Public Service Commission

Volume – 3

(Secondary & Senior Secondary Standard)

2nd Grade

CONTENTS

	Mathematics	
	(Secondary & Senior Secondary Level)	
	Volume - 3	
1.	Analytical Geometry	
	(ii) Three-Dimensional Geometry	1
	 Distance between two points 	4
	 Direction cosines and direction ratio 	9
	 Angle between two lines 	11
	Projection	12
	• Plane	19
	Straight line	25
2.	Calculus	41
	• Limit	41
	Continuity	60
	Differentiability	66
	 Application of derivatives 	96
	Maxima and minima	102
	Integral Calculus	109
	Mean Value Theorem	144
	 Application of integrals in finding the area 	160
3.	Vector Algebra	187
	Vectors and Scalars	187
	• Types of vectors	189

	Algebra of vectors	190
	 scalar/dot product of vectors 	191
	 vector/cross products of vectors 	192
	Scalar triple product	194
4.	Statistics and Probability	196
	 Mean, Median, Mode 	196
	 Variance and standard deviation 	201
	 Probability of an event 	202
	Algebra of Events	203
	Conditional Probability	207
	Baye's Theorem	210
	Probability Distribution	213
	Binomial Distribution	217

Statistics and Probability

1) HIEZI (Mean): - anta n staront of mans x, x2 x3 ---- xn &1 57 \$181011 & 21/11 में प्रेक्षाती की संख्या (n) का आग देने पर माख्य प्राप्त होता है। इसे (जे) से जिसपेन करते हैं। माध्य = प्रदानी का योग प्रेकानी की सट्या $\overline{\mathcal{X}} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n}$ $\overline{\mathcal{X}} = \frac{1}{n} \stackrel{\sim}{\underset{i=1}{\overset{i=1}{\overset{\sim}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi=1}{\underset{i=1}{\atopi$ 2) बहुलम (Mode):- किसी आंकडो में भर का कह मान भी सबसे आखेक बार उपरिग्धेत ही ती, उन्धति जिस प्रेहाम की खारम्बारता सर्वाधिक हो. वह बहलक कहलाता है। 3 माहियना (Median):- माहियना की गणना के लिर आकडी को आरोही या अवरोहि क्रम में खावास्पित करेंगे। (1) यादे प्रेंधानी की संख्या विषम हो ती माल्येक (1+1) के मेहान होता है। (ii) यादे प्रेवनों की संख्या सम हो तो मार्हकेका (भू) वाँ अपर (भू+1) कां प्रेहानों का मान्य होती है।

Toppersnotes

(6) Jahofa all HIY (Measures of dispersion):-आंमडी में प्रमीतीन या विश्वीपन का माप प्रेशनी त वहाँ प्रयुक्त कैन्द्रीय प्रवृति की माप के आधार घर किया जाता है। प्रकोठी के निक्रुतालेखित माप है-(७) साध्य विन्यलन (9) परिसर (C) मानक विन्यलन (d) न्युयुक्त किंगलन A परिसर (Range):- म्किसी बर्गीकृत भेवानी के आँकडो के आधिकतम व न्यूनतम म्ह्यों का अन्तर परिसर काटलाता है परिसर = आधिकतम मान - न्यूनतम मान उदाहरू :- प्रेहानी 2,5,7,10,3,11 का परिसर कात करों! 412-412 = 11 - 2 = 9B. HIER Id -Idon (Mean deviation):-[M.D.] = किसी प्रेघान का रियर मान से अन्तर प्रेद्वान का रिपर मान से 'विचलन' कहलाता है। > रियर माम से विचलनों के निर्देश माना का माद्य, मारण विगलन ' कहलाता है। M.D. = खिर मान से विचलनी का योग प्रेयाणी की संहप्त (1) अवर्गीकृत आँकडी के लिय माख्य विरालन:-TARAT A STITES X, X2 X3 ... Xn EI प्रेहाग मां का व में विगलन अस्ताः x1-9, x2-9, x3-9, ---- xn-9

विरालनी का जिरपेका मान 1x,-a1 1x2-a1 1x3-a1 ---- 1xn-a1 विनलना के जिरपेश मानी का माण्य अत्पति माण्य '9' में यापेका माण्य विनालन ह $M \cdot D \cdot (a) = T_{x_1} - a | x_2 - a | x_3 - a | \dots | x_n - a |$ $M \cdot D(g) = \frac{\frac{2}{1-1}|\chi_i - q|}{2}$ भाषता 'र' के सापेश माफ्य वित्तन MD (52) = हैं | 21 - 521 भाष्ट्रीका M के सामेबा माण्य विन्तलन $[M \cdot D \cdot (M) = \underbrace{\underset{i=1}{\overset{\sim}{\sim}} | x_i - M]}$ (11.) वंगीकृत आंकड़ी के लिए मार्ग्य विनलन. कीसी आंकड़ी में भाभिक प्रेयान २५, २८२ २३--- २५ ह मिनसी बारम्बारताएँ क्रम्याः 5, f2 f3 --- fn है। $\frac{3\pi i}{2} = \frac{2}{2\pi} \frac{\chi_{i} f_{i}}{\chi_{i}}$ $\frac{3\pi i}{2} = \frac{2}{2\pi} \frac{\chi_{i} f_{i}}{\chi_{i}}$ $\frac{1}{2\pi} = \frac{2}{2\pi} \frac{\chi_{i} f_{i}}{\chi_{i}}$ $\frac{1}{2\pi} = \frac{2}{2\pi} \frac{\chi_{i} f_{i}}{\chi_{i}}$ प्रेठागी का मारुप र के सापेका विन्त्रकी का निरेपेश मान $|x_1 - \overline{x}| |x_2 - \overline{x}| |x_3 - \overline{x}| = ... |x_n - \overline{x}|$ माह्य () के सामेदा माह्या कीतन $M \cdot D(\bar{x}) = \frac{1}{2} \sum_{i=1}^{2} f_i |x_i - \bar{x}|$

हल

-	9c;	fi	fixi	12:-51	$f_1[x_i-\overline{x}]$
	2	2	4	5.5	11
	5	8	40	२.५	20
	6	10	60	1.5	15
	8	7	56	0-5	3.5
	10	8	80	2.5	20
	12	s	60	५.९	२२.5
	-	6f = 40	1-300		5 (m=1- 02)

$$\xi f(x_{1}-x_{1}) = 92$$

 $\begin{array}{l} \overbrace{\mathcal{M}}^{\text{IIEN}} \overline{\lambda} \quad \overbrace{\mathcal{A}}^{\text{IIEN}} \quad \overbrace{\mathcal{M}}^{\text{IIEN}} \quad \overbrace{\mathcal{A}}^{\text{IIEN}} \quad \overbrace{\mathcal{A}}^{\text{II$

Toppersnotes

C. प्रसरग और मानक टिंगलन:-(Variance and Standed Deviation) (1) THAOT :- and x, x2 x2 Xn Stato & Ranger HIGU X EI $(x_1 - \overline{x})^2 + (x_2 - \overline{x})^2 + (x_3 - \overline{x})^2 - \cdots + (x_m - \overline{x})^2$ अर्षात है (xi- 1) आप विनल् के वर्गी के सीग में प्रेदानी की संख्या का जाग देने पर प्राप्त संख्या भाष्य असरल कहलाता है। इसे ज्य मानिसापत करते हा $\mathcal{T}_{(4,7)}$ $\nabla^2 = \frac{1}{2} \frac{2}{(2(1-5c)^2)}$ (11) मानका िन्धलन: मानका विन्धलन की सामान्यत: ज में भइतित करते हैं। $\sigma = \sqrt{\frac{1}{2}} \stackrel{\sim}{\lesssim} (x_i = \overline{z})^2$ (111) रक असतत बारमबारता बंटन का मानक विनलन .- $\sigma = \sqrt{\frac{1}{n}} \gtrsim f_1(x_i - \overline{x})^2$ (11.) रेक स्तत बारम्बाला बरेन का मानक चिपलन:-

$$\overline{D} = \frac{1}{n'} \sqrt{n'} \stackrel{\sim}{\underset{i=1}{\overset{\scriptstyle}{\underset{i=1}{\overset{\scriptstyle}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{\scriptstyle}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\overset{\scriptstyle}{\underset{i=1}{\atop\atopi=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop\atopi={1}{\atop\atop{i=1}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atopi=1}{\underset{i=1}{\underset{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\underset{i=1}{\underset{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop\atop{i=1}{\atop{i=1}{\atop\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop\atop{i=1}{\atop{i=1}{\atop\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop\atop}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i=1}{\atop{i$$

Toppersnotes TILIANI PROBABILTTY * "किसी घटना के होने की राम्यावना को प्राधिकता (Probability) ofEd El" प्रतिदर्श समाध्ट: - किसी यादाबीक घटना/परीका के किसी संभावित न तीले को परिणाम कहते हैं तथा परीक्षान या घटना के सभी संभावित परिणामी का सम्भूभय उक्त परीक्षण / बाटना का (प्रतिदर्श समाब्टे " कहलेला है) इसे 5' दारा मदारीत करते हैं। प्रतिदर्श समाध्टे का प्रसेक गरिगाम प्रतिदर्श हिन्दु करनगारी उदाहरूगे :- दी सिकनी की खन खार उधाला जाता है। इलका प्रतिदर्श समाधि कात करो ? हत: 1 किंदको पर दा पारेगाम होते ह न्येन (म) व पट्(T) ता दा दिवकी के मजावित भरिगाम हा ककते हे н, н н,т т,н т,т क्वतः प्रतिदर्श क्रमाहेर 5 = { HN, HT, TN, TT } (1) घटना (Event):-" प्रतिदर्श समाध्य डका कोई उपसमुख्यम राम घटना महलाणी।" (1) असंभव धटना:> यह किसी घटना के घटित होने की संगंवना न हो ता उसे असंग्मव धटना कहते हैं। रिकत समुख्यम \$ = {] को अलभव घटना के रूप में प्रदेवीन करेगे। (11) निर्म्यतत खटना:-> थाद किसी धटना के छाटिक हीने की लगांवना किस्मेत ही ती उसे निक्ति घटना कहते है। पूर्व प्रतिदर्श समादि 5 की निकित घटना के रूप में प्रवारीत करेगी

Toppersnotes

(111) सरल घटना :- यादे किसी घटना में केवल एक प्रतिकरी छिन्द र्ध, उसे अरत घटना कहते है। (iv.) किंगा पटना :- यादि किसी घटना में एक से आर्यिक अति दर्श हिन्दु ही, उसे मिन्ना फिन्ना वाटना कहते हैं। Example: (1) किसी पासे की कैकने पर उनके 7 प्राप्त होना स्क असमव वाटना है। क्योति, पार्म में अन्छ 1,2,3,4,5,6 ही होतेह भारत की प्रतिदर्श रामारे 5 = {1,2,3,4,5,63 ह 2) किसी पाले की फैकने पर सम या विका सरेखा प्राप्त होना एक जिस्ति खटना है। करको के पार्त के रूम अर्फ 2, 4, 6 a (24 4 31-5 1, 3, 5 Etd E) 3 दें। रिक्को की उदालने पर प्रतिहर्श समएहेट $S = \{HH, HT, TH, TT\}$ केवल स्क अतिदर्श बिन्दु अपति संरख घटना [मम] व [TT] होगी] एक से 1 आधिक भागिदरी बिन्दु अधति किंगा वाटनां हमन 3व (तम) होगी। 2 घटनाओं का वीपगावतः-(1) पूर्व घटनाः > प्रतीक घटना A के सापैदा रक अन्य घटना A' होती हैं भीते बटना में परि बटना या घटना में मही कही है इसे संमुख्य A' या S-A या 'A-मही' के रूम में भुदार्शि करते है। (11) घटना 'A या B':- दी समुख्य A तथा B का शामीलन, घला 'A या B' महलाती ' इसे A UB दारा प्रवर्धि करते हैं। (111.) धाटना 'A और B':-> दा सम्मुलाय A तथा B का सर्वनिष्ठ रामुख्यय की पटना ' A और B' कहते है। इसे ANB दारा प्रदारीत कहने हा

Toppersuoles Unleach the topper in you

(1v.) घटना ' A किन्तु B नहीं': + अब मोई घटना A में तो हो ले किन B में ज हो ते उसे खटना (A किन्तु B नहीं कहते हैं) इसे A-B या ANB' दारा प्रवासित करते हैं। (11.) परमार उनपवली बाटनाएँ : + के बाटनाएँ A ऑर B पराय अपवली धटनाएँ कहलती है यह के दोने। स्क साथ धारत नहीं ही सकरी। wind wy wa A site B yt y to Ent et] $A \cap B = \emptyset$ (Vi) मिरकोष घटनाएँ : > दीया दी से आदिन हे धटानाएँ सिनना समितिन करने पर प्रतिदर्श समादि 5 प्राप्त हो ते उमे निर्मेष घटनाएँ कहेंगे। AUB = 5 उदारर्ग:- rand mil की प्रतिद्वी रामाधे S= {1,2,3,4,5,6] सम अंक आने की घटना A = {2, 4, 6} 1944 Sig 317 cht eren B = {1, 3, 5} समुद्राय A त्या B का सर्वनिष्ट(1) करने पा हम रिक्त समुनाय भाष होगा ANB = Ø अर्धात घटना मय B 4र पार अपवर्मी धाटना ही समुद्राय A त्या B का साम्मितन(U) करने पर अतिवर्शकमादि प्राप्त होगी AUB = ई अर्थात वाटना निः र्वाच वाटना है। 3) घटना की प्राधिकता :-=) किसी धटना A की प्राधिकता की P(A) जारा प्रकार्शन करेंगे पटना E सी प्रायिकता, P(E) प्राधिकता P(E) = पटनाह के अनुकूल परिणामी की राख्या धटनाह के कुल परिणामी की राख्या

"किसी खटना के सभी प्राधिकताओं का योग सदेव"1" होता है।" ⇒ घटना 'AATB' की प्राधिकता P(AUB) होता है। $P(A \cup B) \neq P(A) + P(B)$ P(AUB) = P(A) + P(B) - P(ANB)प्रहों P(A) → धटना A की आधिकता P(B) - with Ban Hillianal PIAUB) = Quen 'A UT B' AD TITUTAN P(ANB) = घटना ' Aझॉर B' की प्रापिकता => धाटना (A - नहीं की प्रापिकाता P(A') धीती है। P(A') = 1 - P(A)(हॉ P(A) → धटना A की मारिकत) P(A') > CIZAI A and Yran Even A' and Militari ⇒ धादी A तण्या B परस्पर अन्वजी द्वटना है तो का 1000 $P(A \cap B) = P(\phi) = O$ Example : 10 तीन सिक्नो को खक बार 3 काला जाता है 1 ती इनकी प्रतिदर्श WATER HHN, HAT, HTH, THH, THT, TTH, THT, HTT? अपमित कुले परिकामें की सरेका 8 दे। (1) में तीन भीन प्रकट होना प्राधिकता P(A) = 1/8 A = { H H H } 33922 420114 42 = 1 (ii) B: की पट प्रकट होना B: {TTH, THT, HTT] 4114-01 P(B) = 3 313 20 4120114 4 201=3

Toppersnotes

Example: Dean पासे को उद्धाला जाता है। ते इसकी प्रतिब्ही समान्ट S = {1, 2, 3, 4, 5, 6] & of an unton the and = 6 21 () हरना A: एक अभाग्य संख्या प्रकट होना A= { 2,3,5 } 312 4 4 doilh = 2 HINGHET $P(A) = \frac{3}{K} = \frac{1}{2}$ (1) पान B: एक सम सांखा भन्द होना B = {2, 4, 6} 312 = 3 $y_{11} \frac{1}{2} \frac{1}{9(1)} P(B) = \frac{3}{6} = \frac{1}{2}$ (iii) (alb) = { 2,3,4,5,6} 31200 4120115 = 5 ¥11241 P(PUB) = 5 (1) ELERI (ANB) = [2] 31 2 20 4120114 =1 प्राधिकता $P(ANB) = \frac{1}{6}$ P(AUB) = P(A) + P(B) - P(ANB)(V.) $\frac{5}{2} = \frac{1}{2} + \frac{1}{2} - \frac{1}{6}$ $\frac{5}{7} = 1 - \frac{1}{7} = \frac{5}{7}$ (vi) घटना B' सन संख्या नहीं हीने प्रापिकता P(B') = 1 - P(B)= 1 - 1 = 12

4) संप्रतिलंध प्राधिकता (Conditional Probability):-
⇒परिभाषा:- यार्थ हत्या F किसी यादान्दीक परीकाल के प्रतिदर्श
समाब्ध की संबंधित दी धटनाएँ हें ती
F के धादित होने पर ह की प्राधिकता हेजी

$$P(E) = \frac{P(E \cap F)}{P(F)}$$
 जहाँ $P(F) \neq 0$

=> संप्रतिबंध प्राधिकता के गुंगे :-(i) शहे E तया F किसी प्रतिदर्श समाप्टे Sकी दी वाटनाएँ हूं तां

$$P\left(\frac{S}{F}\right) = \frac{P(SNF)}{P(F)} = P\left(\frac{F}{F}\right) = 1$$
$$P\left(\frac{S}{F}\right) = P\left(\frac{F}{F}\right) = 1$$

(ii) यादे A और B प्रांतिदर्श समाधी S की दो धटनाएँ हैं तथा F स्क अन्य घटना है जहां P(F) ≠ 0 तो

$$P\left(\frac{A \cup B}{F}\right) = P\left(\frac{A}{F}\right) + P\left(\frac{B}{F}\right) - P\left(\frac{A \cap B}{F}\right)$$

WA A du B WILL 3 4 4 and will Edit ANB = ϕ

$$P\left(\frac{AVB}{F}\right) = P\left(\frac{A}{F}\right) + P\left(\frac{B}{F}\right)$$

(iii) थादे E और F अतिदर्भ समाछे 5 को दो दाटनार है तथा E की फरक घटना E' हो ता

$$P\left(\frac{E'}{F}\right) = 1 - P\left(\frac{E}{F}\right)$$

Toppersnotes (5) भार्यकता का गुगन नियम :-महि ह तथा ह रक प्रतिदर्श समादे 5 की कोई दा घटनाएँ है तो P(ENF) = P(F)·P(-틒) 21 $P(E \cap F) = P(E) \cdot P(\frac{F}{E})$ GÉT P(E) = O T P(E) = O ET (6) रखतंत्र घटनाएँ.. के व्यटनाएँ ह तथा म स्वतंत्र पटनाएँ कहलाएगी यहि $P\left(\frac{F}{E}\right) = P(F)$ $P(E) \neq 0$ $P(E) = P(E) = P(E) \neq 0$ अतः किसी रक घटना के छाटित हीने पर दसरी घटना की भार्यकता पर कोई प्रकास न पर ते रेती (धरनाओं की स्वतंत्र धरना कहने है। गुन:- यादे E और F कियी प्रातदर्श समाह्ट S की दी धटनाएं हे तो E और F स्वतंत्र खटनाएँ हो गी यार्ट $P(E \cap F) = P(E) \cdot P(F)$

Toppersnotes

पायिकता के लिए वियज समय भाद लेयज उमैय - यद कोई उम्रीग इन्ता में पूरा ही जो रुक के बाद एक एकानर हम में थे इस दियति में यदि द्वितियं चला का कोई पारेगाम जात हो तो अपम चाटा के लिए किसी घटना की जायिकता लियज जमय ही जात की जा लक्ती हैं। 29.4 जायिकता समय -JUH -aROI = A TAA4 -4701 = A, A, A2-- AN) TIR $\forall F \neq of \exists T \exists T \Rightarrow P(A) = P(A,) \times P(A) + P(A_1) \times P(A)$ $T(A) = P(A_1) \times P(A_2)$ $+P(A_3) \neq (A_1) +$ P(An)XP/A तेव वेयज जमेम से P(A)A; P(A) = $P(\frac{A}{A_{J}}) \times P(A_{J})$ = P(AJ) XP(Aj SPLAJ) XP(P/A) की बंग मब 13 मेरी में २००४ उठ जेदं 21 तया 4 wa select Dia E fasel es वग्र का प्यम महत्त्वमा समन यह ज्ञात होने उसमें से एंड गेदं निहालने पर यदि यह सफेद है। भी बया पा है हि 98 A & आई प्रयम -य(ठ) केंग्र का यथन PLAJ = PLD = 2 नात है कि रोद राफेद है यह $A + 2 = P(A) \times P(\frac{1}{A}) + P(B) \times P(\frac{1}{A}) + P(B) \times P$